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L Motivation

Based on

The method of differential equations

Gehrmann & Remiddi: a method to evaluate master integrals.

Let us consider Feynman integrals with two scales and let x be
the ratio of these scales.

DE
0d = M (x,€) J,

where J is a column-vector of N primary master integrals, and
M is an N x N matrix with elements which are rational
functions of x and e = (4 — D) /2.



[J.H. Henn'13]: turn to a new basis where DE take the form

hd=eM(x)J.
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: turn to a new basis where DE take the form

Oxd=eM(x)J.

Then solving DE is straightforward.

The e-form is not always possible. The simplest counter
example is the two-loop sunset diagram with three equal
NON-zero masses.

However this form is possible:

Oxd = (Mo(x) + eMy(x))J .

However, 'integrating out’ the constant term appears to be an
essentially more complicated problem.



Solving differential equations for Feynman integrals by expansions near singular points

L Motivation

Elliptic generalization of multiple polylogarithms motivated by
two-loop examples, where the e-form is impossible



Solving differential equations for Feynman integrals by expansions near singular points

L Motivation

Elliptic generalization of multiple polylogarithms motivated by
two-loop examples, where the e-form is impossible

An example of a calculation of a full set of the master
integrals with ‘elliptic sectors’



Solving differential equations for Feynman integrals by expansions near singular points

L Motivation

Elliptic generalization of multiple polylogarithms motivated by
two-loop examples, where the e-form is impossible

An example of a calculation of a full set of the master
integrals with ‘elliptic sectors’

Elliptic functions appear only in two sectors and final results
are expressed either in terms of multiple polylogarithms or, for
the elliptic sectors, in terms of two and three-fold iterated
integrals suitable for numerical evaluation.
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L Motivation

We are very far, even in lower loops orders, from answering the
following question:

‘What is the class of functions which can appear in results for
Feynman integrals in situations where e-form is impossible’?

Knowing a differential system and the corresponding boundary
conditions gives almost as much information about Feynman
integrals as knowing their explicit expressions in terms of some
class of functions.

Some properties of the integrals are more accessible via DE.
Singularities of DE provide a way to examine the branching
properties of integrals.

Numerical values of the integrals can be obtained from a
numerical solution of DE.
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L Motivation

m An algorithm to solve difference equations for coefficients
of the series expansions at a given singular point.

m A matching procedure which enables one to connect
series expansions at two neighboring points.

m As a proof of concept: a computer code where this
algorithm is implemented for a simple example of a family
of four-loop Feynman integrals where the e-form is
impossible.
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I—Series expansions singular points

Oxd =M(x)J.

We imply that all the singular points of DE are regular, i.e. we
can reduce the DE to a local Fuchsian form in any singular
point.
General solution

J(x)=U(x)C,

where C is a column of constants, and U is an evolution
operator

U(x) = Pexp VM(X) dx] |



Expanding in a vicinity of each singular point.
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The expansion is
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U(X):ZXAZZHC(H—F)\,k)annkX,

AES n=0 k=0

where S is a finite set of powers of the form A = re with
integer r, K\ > 0 is an integer number corresponding to the
the maximal power of the logarithm.
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I—Series expansions singular points

Expanding in a vicinity of each singular point.
Take x = 0.
The expansion is

ooKAl

U(X):ZXAZZHC(H—F)\,k)annkX,

AES n=0 k=0

where S is a finite set of powers of the form A = re with
integer r, K\ > 0 is an integer number corresponding to the
the maximal power of the logarithm.

The goal is to determine S, K), and the matrix coefficients
C(n+X\k).
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I—Series expansions singular points

Suppose that DE are in a global normalized Fuchsian form

M(x):@—i—z al

X

and for any k =0, ..., s the matrix A, is free of resonances,
i.e. the difference of any two of its distinct eigenvalues is not
integer.

In particular, the ‘elliptic’ cases, as a rule, can algorithmically
be reduced to a global normalized Fuchsian form using, e.g.,
the algorithm of Lee
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with go # 0.
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I—Series expansions singular points

Multiply both sides by the common denominator xQ(x), where

Q(x):H X — Xk) qux

with go # 0.
Define the polynomial matrix B (x, «) and its coefficients

B (a) by
B(x,a) = Q(x)(xM(x) —a) = > Bn(a)

with Bo (Oé) = qO(AO — Oé).
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I—Series expansions singular points
Then the recurrence relations read
- BJF(B()(A + ), —Aqo, K)\)C ()\ + n, OKA)

—ZBJF A+n—m), —qm K.)C (A +n—m,0.Ky) .

(BJF means ‘Block Jordan Form’.)

C(x,0)
C(a,0.K) = : denotes a (K + 1)N x N matrix
C(o,K)
built from blocks C («, k), A 0 0
BJF(A, B, K) = 0 - 0
0 O . B
0O 0 0 A
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I—Series expansions singular points

The evolution operator U is determined up to a multiplication
by a constant matrix from the right. We fix it by the condition

U(x) 20 xAo

We determine S, i.e. the set of distinct eigenvalues of Ay, and
K, i.e. the highest power of the logarithm, and the leading
coefficients C(A, k), representing

K
1
xA = ZX/\ZHC()" k) In* x .

AES k=0
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I—Series expansions singular points

The matrix —BJF(By(A + n), —qo, K)) on the lhs of the
difference equation is invertible for A € S and n > 0 because

det BIF(Bo(A + n), —qo, Ky) = (det Bo(A + n))" "
g7 [det(Ag — A — n)]f T

with go # 0 and (due to the absence of resonances in Ap)
det(Ao — A= n) 7& 0,

The recurrence relation takes the form

C(A+n,0.K)) = XS: T(A,n,m)C(A+n—m,0.K,),

with m=
T()‘> n, m) = [BJF(BO()‘ + n)> —do;, K)\)]_l

X BJE(Bn(A+n—m), —qm, K) -
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I—Series expansions singular points

This finite-order recurrence relation, together with the initial
conditions, is solved with a linear growth of the computational
complexity wrt the number of expansion terms.

The data necessary to obtain the expansion at x = 0:

m The set S = {\;, Ao, ...} of the eigenvalues of the matrix
residue Ay.
m For each A\ € §:

m the maximal power of the logarithm K), and the leading
coefficients C (A, 0..K)) determined by the boundary
conditions.

m the matrix coefficients T (A, n,1),..., T (A, n,s) which
are (Ky + 1) N x (Ky + 1) N matrices, where the
dependence on n is explicit.
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I—Series expansions singular points

There are three possible scenarios of evaluating C (A + n, k):
m with analytic numbers exactly in ¢,
m with analytic numbers in an expansion in ¢,

m with approximate numerical numbers in an expansion in e.
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After solving the recurrence relations, the evolution operator
can be evaluated within the convergence region of the power
series.

In order to perform an analytical continuation to the whole
complex plane, one may use the same approach for the
expansion around other singular points.

Suppose that the next singular point closest to the origin is
x=1.

We can construct the evolution operator also in an expansion
near this point. Let it be U (x). Due to the freedom in
definition of the evolution operator, we have

Ux)=U(x)L.

where L is a constant matrix.
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To fix L, choose a point which belongs to both regions of
convergence, e.g. x = 1/2. We obtain L = U™ (1/2) U(1/2),
so that in the whole convergence region of U we have

Ux)=Ux) 0 (1/2)U(1)2) .

Analytic continuation to the whole complex plane of x.
In the case where the singularities lie on the real axis and if we
are interested in the evaluation for real x, we can avoid
expansions near regular points. A sequence of the singular
points

Xo < X3 <...Xs <00 = Xs41 = X1

then for each 0 < k <'s we make the (Moebius)

transformation
ax+ b

cx +d

yk(x) =



which maps the points xx_1, Xk, Xxy1 to F1, 0, +1,
respectively.
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which maps the points xx_1, Xk, Xxy1 to F1, 0, +1,
respectively.

Explicitly,

(x = xk) (Xk+1 — Xk—1)
(x = Xoq1) (X1 — xic) + (X = Xu—1) (Xkg1 — Xx)

yi(x) =+
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I—Mal:r:hing

which maps the points xx_1, Xk, Xxy1 to F1, 0, +1,
respectively.

Explicitly,

(x = xk) (Xk+1 — Xk—1)

yi(x) = i(x — Xkt 1) (Xk—1 — Xk) + (X — Xe—1) (Xe1 — xk)

The boundary conditions are included at one of the points,
e.g. x = 0 and then series expansions at other points can be
obtained by matching, step by step, pairs of expansions at
neighboring points.
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317 414 T

/ / d® k1 .dPky (ky - p)?e(ka - p)?7 (ks - p)? (ks - p)*
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(k1 - kp)M0(ky - k3)?* (ky - ka)?2 (ko - k3)™2 (ko - ka)™*

with x = p?/m?.
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I—Compul:er code in a simple example

Feynman integrals corresponding to the generalized sunset
graph with two massless and three massive lines

317 414 T

/ / dPky ... dPky (ki - p)? (ko - p)?7 (ks - p)?e (ke - p)?
R () (m — Ry (e — KDy ( — (5 i + P
(k1 - kp)M0(ky - k3)?* (ky - ka)?2 (ko - k3)™2 (ko - ka)™*

with x = p?/m?.
There are four master integrals in this family. We choose

Jo = {F1,1,1,1,1,0,...,0, Fii12110,..05 F121110,..0 F1,2,1,1,2,0,...,0}-
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I—Compul:er code in a simple example

We turn to the basis J = T~ - Jy where DE are in a global
normalized Fuchsian form

The singular points are x, = 0,x; = 1,x, =9 and

X3 = X_1 — OQ.

The variable changes corresponding to the singular points are
fo=x/(2—x),fi=(x—1)/(1+7x/9),
h=09—x)/(T+x),=-9/(2x —9).

In new variables, the radii of convergence are equal to 1.

For adjacent regions i and i + 1 we search the best possible
matching point which is such x that it lies between x; and x;;

and that |fi(x)| = |fiy1(x)].
Matching points are {—3,3(3 — 2v/2),3,3(3 +2v2)}.
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I—Compul:er code in a simple example

To fix boundary conditions we choose the point x = 0 where
the integrals of the given family become vacuum integrals.

To evaluate the four master integrals at x = 0 we derive
onefold Mellin-Barnes representations for them and obtain the
possibility to achieve a high precision for any given coefficient
in the e-expansion.

Using matching we perform an analytic continuation and
obtain convergent series expansion in each region.

The code DESS.m as well files with input data can be
downloaded from
https://bitbucket.org/feynmanintegrals/dess.


https://bitbucket.org/feynmanintegrals/dess
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For example, at xo = 25, we obtain the following result (shown
with a truncation to 10 digits) for the first primary integral:
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2
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— 185.9464179437 + 6.5261388472 1
— (1825.1476432369 — 48.95505937281)¢
— (8406.8551978029 — 176.0638485153 1)62

— (58330.4283767260 — 401.9617475893i)¢>.
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For example, at xo = 25, we obtain the following result (shown
with a truncation to 10 digits) for the first primary integral:

025 n 2.125  0.2391337000  5.2663306926
2

=z €3 € €
— 185.9464179437 + 6.5261388472 1
— (1825.1476432369 — 48.95505937281)¢
— (8406.8551978029 — 176.0638485153 1)62

— (58330.4283767260 — 401.9617475893i)¢>.

We checked results at sample points (between singular point
and matching points) with FIESTA
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L Perspectives

m We presented an algorithm for the numerical evaluation
of a set of master integrals depending nontrivially on one
variable at a given real point with a required accuracy.

m The algorithm is oriented at situations where canonical
form of the DE is impossible.

m We provided a computer implementation of the algorithm
in a simple example.

m This code is similar in spirit to the well-known existing
codes to evaluate harmonic polylogarithms and multiple
polylogarithms, where the problem of evaluation reduces
to summing up appropriate series.

m Our public package includes tools for a decomposition of
the real axis into domains, a subsequent mapping and an
introduction of appropriate new variables.
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m We are thinking of a more general package which would
include an automation of as many steps of the presented
algorithm as possible. The future package needs at least
an implementation of the algorithm to solve difference
equations for series expansions at the singular points.

m One can hardy construct a general algorithm to fix
boundary conditions because, usually, the choice of the
corresponding point and the way to obtain data for the
boundary conditions is done in every situation in a special
way.

m Still we can suggest a format for including information
about the boundary conditions for using it in our future
package.
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L Perspectives

m Our future package would check if a given system of DE
is already in a global Fuchsian normalized form, with
singularities on the real axis, and, if this is true, the
package would automatically construct the evolution
operator in an expansion up to a required order.

m One can apply DE even in the case of one-scale integrals
by introducing an extra scale, solving DE with the respect
to the ratio of the two scales, x, and then picking a
contribution to the expansion at the point where x tends
to its primary value
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L Perspectives

m From the point with boundary conditions (e.g. x = 0)
to the given point (e.g. x = 1),
with the help of the operator U71(1/2)U(1/2).

m An example of using this strategy in concrete situation:

m We are thinking about adjusting our package to this case
in general situation.



