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Based on [R. Lee, A. Smirnov & V.S., arXiv:1709.07525℄

The method of di�erential equations

[A.V. Kotikov'91, E. Remiddi'97, T. Gehrmann &

E. Remiddi'00, J. Henn'13℄

Gehrmann & Remiddi: a method to evaluate master integrals.

Let us onsider Feynman integrals with two sales and let x be

the ratio of these sales.

DE

∂
x

J = M (x , ǫ) J ,

where J is a olumn-vetor of N primary master integrals, and

M is an N × N matrix with elements whih are rational

funtions of x and ǫ = (4− D)/2.
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Motivation

[J.H. Henn'13℄: turn to a new basis where DE take the form

∂
x

J = ǫM (x) J .

Then solving DE is straightforward.

The ε-form is not always possible. The simplest ounter

example is the two-loop sunset diagram with three equal

non-zero masses.

However this form is possible:

∂
x

J = (M
0

(x) + ǫM
1

(x))J .

However, 'integrating out' the onstant term appears to be an

essentially more ompliated problem.
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Ellipti generalization of multiple polylogarithms motivated by

two-loop examples, where the ε-form is impossible

[L. Adams, C. Bogner, A. Shweitzer & S. Weinzierl'16;

E. Remiddi & L. Tanredi'17; talk by E. Remiddi℄

An example of a alulation of a full set of the master

integrals with `ellipti setors'

[R. Boniani, V. Del Dua, H. Frellesvig, J. M. Henn,

F. Moriello & V.S. '16℄

Ellipti funtions appear only in two setors and �nal results

are expressed either in terms of multiple polylogarithms or, for

the ellipti setors, in terms of two and three-fold iterated

integrals suitable for numerial evaluation.
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We are very far, even in lower loops orders, from answering the

following question:

`What is the lass of funtions whih an appear in results for

Feynman integrals in situations where ǫ-form is impossible'?

Knowing a di�erential system and the orresponding boundary

onditions gives almost as muh information about Feynman

integrals as knowing their expliit expressions in terms of some

lass of funtions.

Some properties of the integrals are more aessible via DE.

Singularities of DE provide a way to examine the branhing

properties of integrals.

Numerial values of the integrals an be obtained from a

numerial solution of DE.
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The goal: to desribe an algorithm whih enables one to �nd a

solution of a given di�erential system in the form of an

ǫ-expansion series with numerial oe�ients.

The idea: to use generalized power series expansions near the

singular points of the di�erential system and solve di�erene

equations for the orresponding oe�ients in these

expansions.

The idea is very well known in mathematis.

[B. A. Kniehl, A. F. Pikelner & O. L. Veretin'17℄
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Motivation

An algorithm to solve di�erene equations for oe�ients

of the series expansions at a given singular point.

A mathing proedure whih enables one to onnet

series expansions at two neighboring points.

As a proof of onept: a omputer ode where this

algorithm is implemented for a simple example of a family

of four-loop Feynman integrals where the ǫ-form is

impossible.



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

∂
x

J = M (x) J .



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

∂
x

J = M (x) J .

We imply that all the singular points of DE are regular, i.e. we

an redue the DE to a loal Fuhsian form in any singular

point.



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

∂
x

J = M (x) J .

We imply that all the singular points of DE are regular, i.e. we

an redue the DE to a loal Fuhsian form in any singular

point.

General solution

J (x) = U (x)C ,



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

∂
x

J = M (x) J .

We imply that all the singular points of DE are regular, i.e. we

an redue the DE to a loal Fuhsian form in any singular

point.

General solution

J (x) = U (x)C ,

where C is a olumn of onstants, and U is an evolution

operator

U (x) = P exp

[∫

M (x) dx

]

.
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the maximal power of the logarithm.
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Expanding in a viinity of eah singular point.

Take x = 0.

The expansion is

U (x) =
∑

λ∈S

x

λ

∞∑

n=0

Kλ∑

k=0

1

k!
C (n + λ, k) xn lnk x ,

where S is a �nite set of powers of the form λ = rǫ with
integer r , Kλ > 0 is an integer number orresponding to the

the maximal power of the logarithm.

The goal is to determine S , Kλ, and the matrix oe�ients

C (n + λ, k).
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Series expansions singular points

Suppose that DE are in a global normalized Fuhsian form

M (x) =
A

0

x

+

s∑

k=1

A

k

x − x

k

and for any k = 0, . . . , s the matrix A

k

is free of resonanes,

i.e. the di�erene of any two of its distint eigenvalues is not

integer.

In partiular, the `ellipti' ases, as a rule, an algorithmially

be redued to a global normalized Fuhsian form using, e.g.,

the algorithm of Lee [R.N. Lee'14℄.



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

Multiply both sides by the ommon denominator xQ(x), where

Q (x) =
∏

k

(x − x

k

) =
s∑

m=0

q

m

x

m .

with q

0

6= 0.
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Multiply both sides by the ommon denominator xQ(x), where

Q (x) =
∏

k

(x − x

k

) =
s∑

m=0

q

m

x

m .

with q

0

6= 0.

De�ne the polynomial matrix B (x , α) and its oe�ients

B

m

(α) by

B (x , α) = Q (x) (xM (x)− α) =

N∑

m=0

B

m

(α) xm .

with B

0

(α) = q

0

(A
0

− α).
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Then the reurrene relations read

− BJF(B
0

(λ+ n),−q
0

,Kλ)C (λ+ n, 0..Kλ)

=
s∑

m=1

BJF(B
m

(λ+ n −m) ,−q
m

,Kλ)C (λ+ n −m, 0..Kλ) .

(BJF means `Blok Jordan Form'.)

C (α, 0..K ) =






C (α, 0)
.

.

.

C (α,K )




 denotes a (K + 1)N × N matrix

built from bloks C (α, k),

BJF(A,B,K ) =








A B 0 0

0

.

.

.

.

.

.

0

0 0

.

.

.

B

0 0 0 A








︸ ︷︷ ︸

K+1
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Series expansions singular points

The evolution operator U is determined up to a multipliation

by a onstant matrix from the right. We �x it by the ondition

U(x)
x→0∼ x

A

0

We determine S , i.e. the set of distint eigenvalues of A

0

, and

Kλ, i.e. the highest power of the logarithm, and the leading

oe�ients C (λ, k), representing

x

A

0 =
∑

λ∈S

x

λ

Kλ∑

k=0

1

k!
C (λ, k) lnk x .
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0

(λ+ n),−q
0

,Kλ) on the lhs of the

di�erene equation is invertible for λ ∈ S and n > 0 beause

detBJF(B
0

(λ+ n),−q
0

,Kλ) = (detB
0

(λ+ n))Kλ+1

= q

(Kλ+1)n
0

[det(A
0

− λ− n)]Kλ+1

with q

0

6= 0 and (due to the absene of resonanes in A

0

)

det(A
0

− λ− n) 6= 0,

The reurrene relation takes the form

C (λ+ n, 0..Kλ) =

s∑

m=1

T (λ, n,m)C (λ+ n −m, 0..Kλ) ,

with

T (λ, n,m) = − [BJF(B
0

(λ+ n),−q
0

,Kλ)]
−1

× BJF(B
m

(λ+ n −m) ,−q
m

,Kλ) .



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

This �nite-order reurrene relation, together with the initial

onditions, is solved with a linear growth of the omputational

omplexity wrt the number of expansion terms.



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

This �nite-order reurrene relation, together with the initial

onditions, is solved with a linear growth of the omputational

omplexity wrt the number of expansion terms.

The data neessary to obtain the expansion at x = 0:



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

This �nite-order reurrene relation, together with the initial

onditions, is solved with a linear growth of the omputational

omplexity wrt the number of expansion terms.

The data neessary to obtain the expansion at x = 0:

The set S = {λ
1

, λ
2

, . . .} of the eigenvalues of the matrix

residue A

0

.



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

This �nite-order reurrene relation, together with the initial

onditions, is solved with a linear growth of the omputational

omplexity wrt the number of expansion terms.

The data neessary to obtain the expansion at x = 0:

The set S = {λ
1

, λ
2

, . . .} of the eigenvalues of the matrix

residue A

0

.

For eah λ ∈ S :



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

This �nite-order reurrene relation, together with the initial

onditions, is solved with a linear growth of the omputational

omplexity wrt the number of expansion terms.

The data neessary to obtain the expansion at x = 0:

The set S = {λ
1

, λ
2

, . . .} of the eigenvalues of the matrix

residue A

0

.

For eah λ ∈ S :

the maximal power of the logarithm Kλ and the leading

oe�ients C (λ, 0..Kλ) determined by the boundary

onditions.



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

This �nite-order reurrene relation, together with the initial

onditions, is solved with a linear growth of the omputational

omplexity wrt the number of expansion terms.

The data neessary to obtain the expansion at x = 0:

The set S = {λ
1

, λ
2

, . . .} of the eigenvalues of the matrix

residue A

0

.

For eah λ ∈ S :

the maximal power of the logarithm Kλ and the leading

oe�ients C (λ, 0..Kλ) determined by the boundary

onditions.

the matrix oe�ients T (λ, n, 1) , . . . ,T (λ, n, s) whih

are (Kλ + 1)N × (Kλ + 1)N matries, where the

dependene on n is expliit.
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Series expansions singular points

There are three possible senarios of evaluating C (λ+ n, k):

with analyti numbers exatly in ǫ,

with analyti numbers in an expansion in ǫ,

with approximate numerial numbers in an expansion in ǫ.
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Mathing

After solving the reurrene relations, the evolution operator

an be evaluated within the onvergene region of the power

series.

In order to perform an analytial ontinuation to the whole

omplex plane, one may use the same approah for the

expansion around other singular points.

Suppose that the next singular point losest to the origin is

x = 1.

We an onstrut the evolution operator also in an expansion

near this point. Let it be Ũ (x). Due to the freedom in

de�nition of the evolution operator, we have

U (x) = Ũ (x) L .

where L is a onstant matrix.
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Mathing

To �x L, hoose a point whih belongs to both regions of

onvergene, e.g. x = 1/2. We obtain L = Ũ

−1 (1/2)U (1/2),
so that in the whole onvergene region of Ũ we have

U (x) = Ũ (x) Ũ−1 (1/2)U (1/2) .

Analyti ontinuation to the whole omplex plane of x .

In the ase where the singularities lie on the real axis and if we

are interested in the evaluation for real x , we an avoid

expansions near regular points. A sequene of the singular

points

x

0

< x

1

< . . . x
s

< ∞ = x

s+1

= x−1

then for eah 0 6 k 6 s we make the (Moebius)

transformation

y

k

(x) =
ax + b

x + d
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Mathing

whih maps the points x

k−1

, x
k

, x
k+1

to ∓1, 0, ±1,

respetively.

Expliitly,

y

k

(x) = ± (x − x

k

) (x
k+1

− x

k−1

)

(x − x

k+1

)(x
k−1

− x

k

) + (x − x

k−1

)(x
k+1

− x

k

)

The boundary onditions are inluded at one of the points,

e.g. x = 0 and then series expansions at other points an be

obtained by mathing, step by step, pairs of expansions at

neighboring points.
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F

a

1

,...,a
14

=
∫

. . .

∫
d

D

k

1

. . . d
D

k

4

(k
1

· p)a6(k
2

· p)a7(k
3

· p)a8(k
4

· p)a9
(−k2

1

)a1(−k2
2

)a2(m2 − k

2

3

)a3(m2 − k

2

4

)a4(m2 − (
∑

k

i

+ p)2)a5

× (k
1

· k
2

)a10(k
1

· k
3

)a11(k
1

· k
4

)a12(k
2

· k
3

)a13(k
2

· k
4

)a14 ,

with x = p

2/m2

.



Solving di�erential equations for Feynman integrals by expansions near singular points

Computer ode in a simple example

Feynman integrals orresponding to the generalized sunset

graph with two massless and three massive lines

F

a

1

,...,a
14

=
∫

. . .

∫
d

D

k

1

. . . d
D

k

4

(k
1

· p)a6(k
2

· p)a7(k
3

· p)a8(k
4

· p)a9
(−k2

1

)a1(−k2
2

)a2(m2 − k

2

3

)a3(m2 − k

2

4

)a4(m2 − (
∑

k

i

+ p)2)a5

× (k
1

· k
2

)a10(k
1

· k
3

)a11(k
1

· k
4

)a12(k
2

· k
3

)a13(k
2

· k
4

)a14 ,

with x = p

2/m2

.

There are four master integrals in this family.



Solving di�erential equations for Feynman integrals by expansions near singular points

Computer ode in a simple example

Feynman integrals orresponding to the generalized sunset

graph with two massless and three massive lines

F

a

1

,...,a
14

=
∫

. . .

∫
d

D

k

1

. . . d
D

k

4

(k
1

· p)a6(k
2

· p)a7(k
3

· p)a8(k
4

· p)a9
(−k2

1

)a1(−k2
2

)a2(m2 − k

2

3

)a3(m2 − k

2

4

)a4(m2 − (
∑

k

i

+ p)2)a5

× (k
1

· k
2

)a10(k
1

· k
3

)a11(k
1

· k
4

)a12(k
2

· k
3

)a13(k
2

· k
4

)a14 ,

with x = p

2/m2

.

There are four master integrals in this family. We hoose

J

0

= {F
1,1,1,1,1,0,...,0, F1,1,2,1,1,0,...,0, F1,2,1,1,1,0,...,0, F1,2,1,1,2,0,...,0} .
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Computer ode in a simple example

We turn to the basis J = T

−1 · J
0

where DE are in a global

normalized Fuhsian form

The singular points are x

0

= 0, x
1

= 1, x
2

= 9 and

x

3

= x−1

= ∞.

The variable hanges orresponding to the singular points are

f

0

= x/(2− x), f
1

= (x − 1)/(1+ 7x/9),
f

2

= (9− x)/(7+ x), f
3

= −9/(2x − 9).

In new variables, the radii of onvergene are equal to 1.

For adjaent regions i and i + 1 we searh the best possible

mathing point whih is suh x that it lies between x

i

and x

i+1

and that |f
i

(x)| = |f
i+1

(x)|.
Mathing points are {−3, 3(3− 2

√
2), 3, 3(3+ 2

√
2)}.
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Computer ode in a simple example

To �x boundary onditions we hoose the point x = 0 where

the integrals of the given family beome vauum integrals.

To evaluate the four master integrals at x = 0 we derive

onefold Mellin-Barnes representations for them and obtain the

possibility to ahieve a high preision for any given oe�ient

in the ε-expansion.

Using mathing we perform an analyti ontinuation and

obtain onvergent series expansion in eah region.

The ode DESS.m as well �les with input data an be

downloaded from

https://bitbuket.org/feynmanintegrals/dess.

https://bitbucket.org/feynmanintegrals/dess
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For example, at x

0

= 25, we obtain the following result (shown

with a trunation to 10 digits) for the �rst primary integral:

− 0.25

ǫ4
+

2.125

ǫ3
− 0.2391337000

ǫ2
− 5.2663306926

ǫ

− 185.9464179437+ 6.5261388472 i

− (1825.1476432369− 48.9550593728 i)ǫ

− (8406.8551978029− 176.0638485153 i)ǫ2

− (58330.4283767260− 401.9617475893 i)ǫ3 .
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Computer ode in a simple example

For example, at x

0

= 25, we obtain the following result (shown

with a trunation to 10 digits) for the �rst primary integral:

− 0.25

ǫ4
+

2.125

ǫ3
− 0.2391337000

ǫ2
− 5.2663306926

ǫ

− 185.9464179437+ 6.5261388472 i

− (1825.1476432369− 48.9550593728 i)ǫ

− (8406.8551978029− 176.0638485153 i)ǫ2

− (58330.4283767260− 401.9617475893 i)ǫ3 .

We heked results at sample points (between singular point

and mathing points) with FIESTA [A.V. Smirnov'16℄.
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Perspetives

We presented an algorithm for the numerial evaluation

of a set of master integrals depending nontrivially on one

variable at a given real point with a required auray.

The algorithm is oriented at situations where anonial

form of the DE is impossible.

We provided a omputer implementation of the algorithm

in a simple example.

This ode is similar in spirit to the well-known existing

odes to evaluate harmoni polylogarithms and multiple

polylogarithms, where the problem of evaluation redues

to summing up appropriate series.

Our publi pakage inludes tools for a deomposition of

the real axis into domains, a subsequent mapping and an

introdution of appropriate new variables.
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Perspetives

We are thinking of a more general pakage whih would

inlude an automation of as many steps of the presented

algorithm as possible. The future pakage needs at least

an implementation of the algorithm to solve di�erene

equations for series expansions at the singular points.

One an hardy onstrut a general algorithm to �x

boundary onditions beause, usually, the hoie of the

orresponding point and the way to obtain data for the

boundary onditions is done in every situation in a speial

way.

Still we an suggest a format for inluding information

about the boundary onditions for using it in our future

pakage.
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Perspetives

Our future pakage would hek if a given system of DE

is already in a global Fuhsian normalized form, with

singularities on the real axis, and, if this is true, the

pakage would automatially onstrut the evolution

operator in an expansion up to a required order.

One an apply DE even in the ase of one-sale integrals

by introduing an extra sale, solving DE with the respet

to the ratio of the two sales, x , and then piking a

ontribution to the expansion at the point where x tends

to its primary value [J.M. Henn, A.V. Smirnov & V.S.'13℄.
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Perspetives

From the point with boundary onditions (e.g. x = 0)

to the given point (e.g. x = 1),

with the help of the operator Ũ

−1(1/2)U(1/2).

An example of using this strategy in onrete situation:

[B. A. Kniehl, A. F. Pikelner & O. L. Veretin'17℄.

We are thinking about adjusting our pakage to this ase

in general situation.


