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The method of di�erential equations

[A.V. Kotikov'91, E. Remiddi'97, T. Gehrmann &

E. Remiddi'00, J. Henn'13℄

Gehrmann & Remiddi: a method to evaluate master integrals.

Let us 
onsider Feynman integrals with two s
ales and let x be

the ratio of these s
ales.

DE

∂
x

J = M (x , ǫ) J ,

where J is a 
olumn-ve
tor of N primary master integrals, and

M is an N × N matrix with elements whi
h are rational

fun
tions of x and ǫ = (4− D)/2.
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[J.H. Henn'13℄: turn to a new basis where DE take the form

∂
x

J = ǫM (x) J .

Then solving DE is straightforward.

The ε-form is not always possible. The simplest 
ounter

example is the two-loop sunset diagram with three equal

non-zero masses.

However this form is possible:

∂
x

J = (M
0

(x) + ǫM
1

(x))J .

However, 'integrating out' the 
onstant term appears to be an

essentially more 
ompli
ated problem.
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An example of a 
al
ulation of a full set of the master

integrals with `ellipti
 se
tors'

[R. Bon
iani, V. Del Du
a, H. Frellesvig, J. M. Henn,

F. Moriello & V.S. '16℄

Ellipti
 fun
tions appear only in two se
tors and �nal results

are expressed either in terms of multiple polylogarithms or, for

the ellipti
 se
tors, in terms of two and three-fold iterated

integrals suitable for numeri
al evaluation.
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Knowing a di�erential system and the 
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onditions gives almost as mu
h information about Feynman

integrals as knowing their expli
it expressions in terms of some


lass of fun
tions.

Some properties of the integrals are more a

essible via DE.

Singularities of DE provide a way to examine the bran
hing

properties of integrals.

Numeri
al values of the integrals 
an be obtained from a

numeri
al solution of DE.
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The idea: to use generalized power series expansions near the

singular points of the di�erential system and solve di�eren
e

equations for the 
orresponding 
oe�
ients in these

expansions.

The idea is very well known in mathemati
s.

[B. A. Kniehl, A. F. Pikelner & O. L. Veretin'17℄
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Motivation

An algorithm to solve di�eren
e equations for 
oe�
ients

of the series expansions at a given singular point.

A mat
hing pro
edure whi
h enables one to 
onne
t

series expansions at two neighboring points.

As a proof of 
on
ept: a 
omputer 
ode where this

algorithm is implemented for a simple example of a family

of four-loop Feynman integrals where the ǫ-form is

impossible.
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∂
x

J = M (x) J .

We imply that all the singular points of DE are regular, i.e. we


an redu
e the DE to a lo
al Fu
hsian form in any singular

point.

General solution

J (x) = U (x)C ,

where C is a 
olumn of 
onstants, and U is an evolution

operator

U (x) = P exp

[∫

M (x) dx

]

.
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Expanding in a vi
inity of ea
h singular point.

Take x = 0.

The expansion is

U (x) =
∑

λ∈S

x

λ

∞∑

n=0

Kλ∑

k=0

1

k!
C (n + λ, k) xn lnk x ,

where S is a �nite set of powers of the form λ = rǫ with
integer r , Kλ > 0 is an integer number 
orresponding to the

the maximal power of the logarithm.

The goal is to determine S , Kλ, and the matrix 
oe�
ients

C (n + λ, k).
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Suppose that DE are in a global normalized Fu
hsian form

M (x) =
A

0

x

+

s∑

k=1

A

k

x − x

k

and for any k = 0, . . . , s the matrix A

k

is free of resonan
es,

i.e. the di�eren
e of any two of its distin
t eigenvalues is not

integer.

In parti
ular, the `ellipti
' 
ases, as a rule, 
an algorithmi
ally

be redu
ed to a global normalized Fu
hsian form using, e.g.,

the algorithm of Lee [R.N. Lee'14℄.
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Multiply both sides by the 
ommon denominator xQ(x), where

Q (x) =
∏

k

(x − x

k

) =
s∑

m=0

q

m

x

m .

with q

0

6= 0.

De�ne the polynomial matrix B (x , α) and its 
oe�
ients

B

m

(α) by

B (x , α) = Q (x) (xM (x)− α) =

N∑

m=0

B

m

(α) xm .

with B

0

(α) = q

0

(A
0

− α).
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Then the re
urren
e relations read

− BJF(B
0

(λ+ n),−q
0

,Kλ)C (λ+ n, 0..Kλ)

=
s∑

m=1

BJF(B
m

(λ+ n −m) ,−q
m

,Kλ)C (λ+ n −m, 0..Kλ) .

(BJF means `Blo
k Jordan Form'.)

C (α, 0..K ) =






C (α, 0)
.

.

.

C (α,K )




 denotes a (K + 1)N × N matrix

built from blo
ks C (α, k),

BJF(A,B,K ) =








A B 0 0

0

.

.

.

.

.

.

0

0 0

.

.

.

B

0 0 0 A








︸ ︷︷ ︸

K+1
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The evolution operator U is determined up to a multipli
ation

by a 
onstant matrix from the right. We �x it by the 
ondition

U(x)
x→0∼ x

A

0

We determine S , i.e. the set of distin
t eigenvalues of A

0

, and

Kλ, i.e. the highest power of the logarithm, and the leading


oe�
ients C (λ, k), representing

x

A

0 =
∑

λ∈S

x

λ

Kλ∑

k=0

1

k!
C (λ, k) lnk x .
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,Kλ) = (detB
0
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0
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with q

0

6= 0 and (due to the absen
e of resonan
es in A

0

)

det(A
0

− λ− n) 6= 0,

The re
urren
e relation takes the form

C (λ+ n, 0..Kλ) =

s∑

m=1

T (λ, n,m)C (λ+ n −m, 0..Kλ) ,

with

T (λ, n,m) = − [BJF(B
0

(λ+ n),−q
0

,Kλ)]
−1

× BJF(B
m

(λ+ n −m) ,−q
m

,Kλ) .



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

This �nite-order re
urren
e relation, together with the initial


onditions, is solved with a linear growth of the 
omputational


omplexity wrt the number of expansion terms.



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

This �nite-order re
urren
e relation, together with the initial


onditions, is solved with a linear growth of the 
omputational


omplexity wrt the number of expansion terms.

The data ne
essary to obtain the expansion at x = 0:



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

This �nite-order re
urren
e relation, together with the initial


onditions, is solved with a linear growth of the 
omputational


omplexity wrt the number of expansion terms.

The data ne
essary to obtain the expansion at x = 0:

The set S = {λ
1

, λ
2

, . . .} of the eigenvalues of the matrix

residue A

0

.



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

This �nite-order re
urren
e relation, together with the initial


onditions, is solved with a linear growth of the 
omputational


omplexity wrt the number of expansion terms.

The data ne
essary to obtain the expansion at x = 0:

The set S = {λ
1

, λ
2

, . . .} of the eigenvalues of the matrix

residue A

0

.

For ea
h λ ∈ S :



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

This �nite-order re
urren
e relation, together with the initial


onditions, is solved with a linear growth of the 
omputational


omplexity wrt the number of expansion terms.

The data ne
essary to obtain the expansion at x = 0:

The set S = {λ
1

, λ
2

, . . .} of the eigenvalues of the matrix

residue A

0

.

For ea
h λ ∈ S :

the maximal power of the logarithm Kλ and the leading


oe�
ients C (λ, 0..Kλ) determined by the boundary


onditions.



Solving di�erential equations for Feynman integrals by expansions near singular points

Series expansions singular points

This �nite-order re
urren
e relation, together with the initial


onditions, is solved with a linear growth of the 
omputational


omplexity wrt the number of expansion terms.

The data ne
essary to obtain the expansion at x = 0:

The set S = {λ
1

, λ
2

, . . .} of the eigenvalues of the matrix

residue A

0

.

For ea
h λ ∈ S :

the maximal power of the logarithm Kλ and the leading


oe�
ients C (λ, 0..Kλ) determined by the boundary


onditions.

the matrix 
oe�
ients T (λ, n, 1) , . . . ,T (λ, n, s) whi
h

are (Kλ + 1)N × (Kλ + 1)N matri
es, where the

dependen
e on n is expli
it.
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Mat
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After solving the re
urren
e relations, the evolution operator


an be evaluated within the 
onvergen
e region of the power

series.

In order to perform an analyti
al 
ontinuation to the whole


omplex plane, one may use the same approa
h for the

expansion around other singular points.

Suppose that the next singular point 
losest to the origin is

x = 1.

We 
an 
onstru
t the evolution operator also in an expansion

near this point. Let it be Ũ (x). Due to the freedom in

de�nition of the evolution operator, we have

U (x) = Ũ (x) L .

where L is a 
onstant matrix.
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h belongs to both regions of
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e, e.g. x = 1/2. We obtain L = Ũ

−1 (1/2)U (1/2),
so that in the whole 
onvergen
e region of Ũ we have

U (x) = Ũ (x) Ũ−1 (1/2)U (1/2) .

Analyti
 
ontinuation to the whole 
omplex plane of x .

In the 
ase where the singularities lie on the real axis and if we

are interested in the evaluation for real x , we 
an avoid

expansions near regular points. A sequen
e of the singular

points

x

0

< x

1

< . . . x
s

< ∞ = x

s+1

= x−1

then for ea
h 0 6 k 6 s we make the (Moebius)

transformation

y

k

(x) =
ax + b


x + d
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The boundary 
onditions are in
luded at one of the points,

e.g. x = 0 and then series expansions at other points 
an be

obtained by mat
hing, step by step, pairs of expansions at

neighboring points.
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. . . d
D

k
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· p)a6(k
2

· p)a7(k
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· p)a8(k
4
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)a1(−k2
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)a2(m2 − k
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)a4(m2 − (
∑
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· k
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)a10(k
1

· k
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1

· k
4
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2

· k
4

)a14 ,

with x = p

2/m2

.



Solving di�erential equations for Feynman integrals by expansions near singular points

Computer 
ode in a simple example

Feynman integrals 
orresponding to the generalized sunset

graph with two massless and three massive lines

F

a

1

,...,a
14

=
∫

. . .

∫
d

D

k

1

. . . d
D

k

4

(k
1

· p)a6(k
2

· p)a7(k
3

· p)a8(k
4

· p)a9
(−k2

1

)a1(−k2
2

)a2(m2 − k

2

3

)a3(m2 − k

2

4

)a4(m2 − (
∑

k

i

+ p)2)a5

× (k
1

· k
2

)a10(k
1

· k
3

)a11(k
1

· k
4

)a12(k
2

· k
3

)a13(k
2

· k
4

)a14 ,

with x = p

2/m2

.

There are four master integrals in this family.



Solving di�erential equations for Feynman integrals by expansions near singular points

Computer 
ode in a simple example

Feynman integrals 
orresponding to the generalized sunset

graph with two massless and three massive lines

F

a

1

,...,a
14

=
∫

. . .

∫
d

D

k

1

. . . d
D

k

4

(k
1

· p)a6(k
2

· p)a7(k
3

· p)a8(k
4
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with x = p

2/m2
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There are four master integrals in this family. We 
hoose

J

0

= {F
1,1,1,1,1,0,...,0, F1,1,2,1,1,0,...,0, F1,2,1,1,1,0,...,0, F1,2,1,1,2,0,...,0} .
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We turn to the basis J = T

−1 · J
0

where DE are in a global

normalized Fu
hsian form

The singular points are x

0

= 0, x
1

= 1, x
2

= 9 and

x

3

= x−1

= ∞.

The variable 
hanges 
orresponding to the singular points are

f

0

= x/(2− x), f
1

= (x − 1)/(1+ 7x/9),
f

2

= (9− x)/(7+ x), f
3

= −9/(2x − 9).

In new variables, the radii of 
onvergen
e are equal to 1.

For adja
ent regions i and i + 1 we sear
h the best possible

mat
hing point whi
h is su
h x that it lies between x

i

and x

i+1

and that |f
i

(x)| = |f
i+1

(x)|.
Mat
hing points are {−3, 3(3− 2

√
2), 3, 3(3+ 2

√
2)}.
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To �x boundary 
onditions we 
hoose the point x = 0 where

the integrals of the given family be
ome va
uum integrals.

To evaluate the four master integrals at x = 0 we derive

onefold Mellin-Barnes representations for them and obtain the

possibility to a
hieve a high pre
ision for any given 
oe�
ient

in the ε-expansion.

Using mat
hing we perform an analyti
 
ontinuation and

obtain 
onvergent series expansion in ea
h region.

The 
ode DESS.m as well �les with input data 
an be

downloaded from

https://bitbu
ket.org/feynmanintegrals/dess.

https://bitbucket.org/feynmanintegrals/dess
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For example, at x

0

= 25, we obtain the following result (shown

with a trun
ation to 10 digits) for the �rst primary integral:

− 0.25

ǫ4
+

2.125

ǫ3
− 0.2391337000

ǫ2
− 5.2663306926

ǫ

− 185.9464179437+ 6.5261388472 i

− (1825.1476432369− 48.9550593728 i)ǫ

− (8406.8551978029− 176.0638485153 i)ǫ2

− (58330.4283767260− 401.9617475893 i)ǫ3 .

We 
he
ked results at sample points (between singular point

and mat
hing points) with FIESTA [A.V. Smirnov'16℄.
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Our publi
 pa
kage in
ludes tools for a de
omposition of

the real axis into domains, a subsequent mapping and an
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tion of appropriate new variables.
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lude an automation of as many steps of the presented

algorithm as possible. The future pa
kage needs at least

an implementation of the algorithm to solve di�eren
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equations for series expansions at the singular points.

One 
an hardy 
onstru
t a general algorithm to �x

boundary 
onditions be
ause, usually, the 
hoi
e of the


orresponding point and the way to obtain data for the

boundary 
onditions is done in every situation in a spe
ial

way.

Still we 
an suggest a format for in
luding information

about the boundary 
onditions for using it in our future

pa
kage.
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Perspe
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Our future pa
kage would 
he
k if a given system of DE

is already in a global Fu
hsian normalized form, with

singularities on the real axis, and, if this is true, the

pa
kage would automati
ally 
onstru
t the evolution

operator in an expansion up to a required order.

One 
an apply DE even in the 
ase of one-s
ale integrals

by introdu
ing an extra s
ale, solving DE with the respe
t

to the ratio of the two s
ales, x , and then pi
king a


ontribution to the expansion at the point where x tends

to its primary value [J.M. Henn, A.V. Smirnov & V.S.'13℄.
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Perspe
tives

From the point with boundary 
onditions (e.g. x = 0)

to the given point (e.g. x = 1),

with the help of the operator Ũ

−1(1/2)U(1/2).

An example of using this strategy in 
on
rete situation:

[B. A. Kniehl, A. F. Pikelner & O. L. Veretin'17℄.

We are thinking about adjusting our pa
kage to this 
ase

in general situation.


