"Bridge between Hadro-dynamics \& HEP" or

"Finding New Dynamics by Cunning"
"The School of Athens"

About the history of Austria:
The Romans had built many, many castles in many, many parts of our old world:

"Bridge between Hadro-dynamics \& HEP" or

"Finding New Dynamics by Cunning" or
"The School of Athens"

About the history of Austria:
The Romans had built many, many castles in many, many parts of our old world:

with one exception: scholars told us about Austria's castles

"The School of Athens"

"ND by Cunning '17"

"The School of Athens"

"ND by Cunning '17"
Heraclitus/
theorist

"The School of Athens"

Raphael/SUSY
"ND by Cunning '17"

Am I at the wrong party?
We talk about New Dynamics (ND) - with perturb. QCD.
-- jet productions: many, many hadrons/quarks \& gluons

$$
\Lambda_{Q C D} \sim 0.1-0.2 \mathrm{GeV} ? \text { Perturb. QCD very good for jets }
$$

Am I at the wrong party?
We talk about New Dynamics (ND) - with perturb. QCD.
-- jet productions: many, many hadrons/quarks \& gluons

$$
\Lambda_{Q C D} \sim 0.1-0.2 \mathrm{GeV} \text { ? Perturb. QCD very good for jets }
$$

-- weak decays of hadrons: the worlds of theorists with mostly 2-body final states (FS)

Am I at the wrong party?
We talk about New Dynamics (ND) - with perturb. QCD.
-- jet productions: many, many hadrons/quarks \& gluons

$$
\Lambda_{Q C D} \sim 0.1-0.2 \mathrm{GeV} \text { ? Perturb. QCD very good for jets }
$$

-- weak decays of hadrons: the worlds of theorists with mostly 2-body final states (FS) in between?? 3- \& 4-body FS for beauty \& charm hadrons !

Am I at the wrong party?
We talk about New Dynamics (ND) - with perturb. QCD.
-- jet productions: many, many hadrons/quarks \& gluons

$$
\Lambda_{Q C D} \sim 0.1-0.2 \mathrm{GeV} \text { ? Perturb. QCD very good for jets }
$$

-- weak decays of hadrons: the worlds of theorists with mostly 2-body final states (FS) in between?? 3- \& 4-body FS for beauty \& charm hadrons !
-- weak decays of hadrons with the impact of non-perturb. QCD: $\bar{\Lambda} \sim O(1) \mathrm{GeV}$

Am I at the wrong party?
We talk about New Dynamics (ND) - with perturb. QCD.
-- jet productions: many, many hadrons/quarks \& gluons

$$
\Lambda_{Q C D} \sim 0.1-0.2 \mathrm{GeV} ? \text { Perturb. QCD very good for jets }
$$

-- weak decays of hadrons: the worlds of theorists with mostly 2-body final states (FS) in between?? 3- \& 4-body FS for beauty \& charm hadrons !
-- weak decays of hadrons with the impact of non-perturb. QCD: $\bar{\Lambda} \sim O(1) \mathrm{GeV}$
-- thresholds, resonances, etc. etc.

Am I at the wrong party?
We talk about New Dynamics (ND) - with perturb. QCD.
-- jet productions: many, many hadrons/quarks \& gluons

$$
\Lambda_{Q C D} \sim 0.1-0.2 \mathrm{GeV} \text { ? Perturb. QCD very good for jets }
$$

-- weak decays of hadrons: the worlds of theorists with mostly 2-body final states (FS)
in between?? 3- \& 4-body FS for beauty \& charm hadrons !
-- weak decays of hadrons with the impact of non-perturb.
QCD: $\bar{\Lambda} \sim O(1) \mathrm{GeV}$-- not surprising it is similar to LQCD
-- thresholds, resonances, etc. etc.

Am I at the wrong party?
We talk about New Dynamics (ND) - with perturb. QCD.
-- jet productions: many, many hadrons/quarks \& gluons

$$
\Lambda_{\mathrm{QCD}} \sim 0.1-0.2 \mathrm{GeV} ? \text { Perturb. QCD very good for jets }
$$

-- weak decays of hadrons: the worlds of theorists with mostly 2-body final states (FS)
in between?? 3- \& 4-body FS for beauty \& charm hadrons !
-- weak decays of hadrons with the impact of non-perturb.
QCD: $\bar{\Lambda} \sim O(1) \mathrm{GeV}$-- not surprising it is similar to $L Q C D$
-- thresholds, resonances, etc. etc.
-- ?`Radiative Corrections'?
!'Applications of QFT to Phenomenology' !

My general items

-- history

$$
\begin{aligned}
& \rightarrow \quad \mathrm{NP} \quad \rightarrow \quad \text { HEP } \\
& \text { flavor dynamics }
\end{aligned}
$$

My general items
-- history

-- now
$\rightarrow \mathrm{NP} \quad \rightarrow$ Hadrodynamics decays of strange/ beauty/charm hadrons

Dalitz plots dispersion relations accuracy/precision
(I) CKM Matrix: consistent one
(II) Duality: exclusive vs. inclusive for $V_{q b}, q=c, u$
(III) 2-vs. 3-\& 4-body Final States in non-leptonic decays for $\Delta \mathrm{B} \ddagger 0 \ddagger \Delta C$ Hadrons
(IV) New Alliance between Hadrodynamics \& HEP

(I) CKM Matrix: consistent one

In Wolfenstein parameterization it gets 3 classes; however:
$>\eta \approx 0.34, \rho \approx 0.13 \ll O(1)$
$>$ PDG: $|V(u b) / V(c b)| \sim 0.085-0.10<0.225$

(I) CKM Matrix: consistent one

In Wolfenstein parameterization it gets 3 classes; however:
$>\eta \approx 0.34, \rho \approx 0.13 \ll O(1)$
$>$ PDG: $|V(u b) / V(c b)| \sim 0.085-0.10<0.225$
Need consistent parameterization of CKM matrix with more precision!

with $f \sim 0.75, h \sim 1.35, \delta_{Q M} \sim 90^{\circ}$

(I) CKM Matrix: consistent one

In Wolfenstein parameterization it gets 3 classes; however:
$>\eta \approx 0.34, \rho \approx 0.13 \ll O(1)$
$>$ PDG: $|V(u b) / V(c b)| \sim 0.085-0.10<0.225$
Need consistent parameterization of CKM matrix with more precision!

$$
\begin{array}{cc}
1-\lambda^{2} / 2-\lambda^{4} / 8-\lambda^{6} / 16, & \lambda \\
-\lambda+\lambda^{5} f^{2} / 2, & 1-\lambda^{2} / 2-\lambda^{4} / 8\left(1+4 f^{2}\right)-f h \lambda^{5} \exp \left(-i \delta_{Q M}\right) \\
f \lambda^{3}, & -f \lambda^{2}-h \lambda^{3} \exp \left(-i \delta_{Q M}\right)+\ldots, \\
\left.\operatorname{lig}_{Q M}\right)+\ldots, & f \lambda^{2}+h \lambda^{3} \exp \left(-i \delta_{Q M}\right)+\ldots \\
f^{2}-f h \lambda^{5} \exp \left(-i \delta_{Q M}\right)+\ldots
\end{array}
$$

with $f \sim 0.75, h \sim 1.35, \delta_{Q M} \sim 90^{\circ}$
Pattern is not so obvious as before,
> but not very different in qualitative ways,
$>$ needs more accuracy \&
$>$ deeper insights in flavor dynamics \& QCD impacts!
"ND by Cunning '17"
radcor 2017, Sept. 2017
"Landscape of fundamental dynamics in our world"
CP asymmetry

$$
\begin{array}{cl}
\diamond S\left(B_{d}->\psi K_{s}\right) \sim 0.69 & \text { for } \delta_{Q M}=90^{\circ} \\
\quad \text { maximal } S\left(B_{d}->\psi K_{s}\right) \sim 0.74 & \text { for } \delta_{Q M}=100-120^{\circ} \\
\diamond S\left(B_{s}->\psi \varphi\right)=O\left(\lambda^{2}\right) \sim 0.03-0.05 &
\end{array}
$$

"Landscape of fundamental dynamics in our world"
CP asymmetry

$$
\begin{array}{cl}
\diamond S\left(B_{d} \gg \psi K_{s}\right) \sim 0.69 & \text { for } \delta_{Q M}=90^{\circ} \\
\text { maximal } S\left(B_{d}->\psi K_{s}\right) \sim 0.74 & \text { for } \delta_{Q M}=100-120^{\circ} \\
\diamond S\left(B_{s}->\psi \varphi\right)=O\left(\lambda^{2}\right) \sim 0.03-0.05 \\
\text { lessons: }
\end{array}
$$

* CKM could produce CP ${ }^{\circ}$ in $B_{d}->\psi K_{S}$ up to 0.74 at most
* $S\left(B_{d}->\psi K_{S}\right) \sim 0.66 \pm 0.03$ does not establish that CKM truly generates that value of $S P$ -

ND could 'hide’ there.
-- the SM gives ~ zero $\subset S$ in doubly Cabibbo decays

- CP asymmetries are most sensitive for theoretical uncertainties - do not treat them like statistical errors!
"ND by Cunning '17"

Procedures in steps

$1^{\text {st }}$ step: models
$2^{\text {nd }}$ step:
model-insensitive (better than model-independent)

Procedures in steps

$1^{\text {st }}$ step: models
$2^{\text {nd }}$ step:
model-insensitive (better than model-independent)
$3^{\text {rd }}$ step:
best fitted analyses often do not give us the best information about the underlying dynamics -
i.e., theorists should not be the slaves of the data
(there are several examples)
! correlations \& judgments!
"ND by Cunning '17"

My goal is to measure CP asymmetries to probe existence \& even features of New Dynamics (ND), since they can depend only one amplitude.

$$
\begin{aligned}
& T(P \rightarrow a)=\exp \left(i \delta_{a}\right)\left[T_{a}+\sum_{a j \neq a} T_{a j} i T_{a j, a}{ }^{\text {resc }}\right] \\
& T(\bar{P} \rightarrow \bar{a})=\exp \left(i \delta_{a}\right)\left[T_{a}^{*}+\sum_{a j \neq a} T^{*}{ }_{a j} T_{a j, a} T^{\text {resc }}\right] \\
& \Delta \gamma(a)=|T(\bar{P} \rightarrow \bar{a})|^{2}-|T(P \rightarrow a)|^{2}=4 \sum_{a j \neq a} T_{a j, a} \text { resc } \operatorname{Im} T^{*}{ }_{a} T_{a j}
\end{aligned}
$$

without non-zero re-scattering direct CP asymmetries cannot \dagger happen, even if there are weak phases.

My goal is to measure CP asymmetries to probe existence \& even features of New Dynamics (ND), since they can depend only one amplitude.
$T(P \rightarrow a)=\exp \left(i \delta_{a}\right)\left[T_{a}+\sum_{a j \neq a} T_{a j} \mathrm{i}_{a j, a}{ }^{\text {resc }}\right.$
$T(\bar{P} \rightarrow \bar{a})=\exp \left(i \delta_{a}\right)\left[T^{\star}{ }_{a}+\sum_{a j \neq a} T^{\star}{ }_{a j} i T_{a j, a}{ }^{\text {resc }}\right]$
$\Delta \gamma(a)=|T(\bar{P} \rightarrow \bar{a})|^{2}-|T(P \rightarrow a)|^{2}=4 \sum_{a j \neq a} T_{a j, a}$ res $\operatorname{Im} T^{*}{ }_{a} T_{a j}$
without non-zero re-scattering direct CP asymmetries cannot happen, even if there are weak phases.
-- large impact of strong re-scattering
-- in particular about ` fuzzy' difference between U-spin \& V-spin symmetries;

My goal is to measure CP asymmetries to probe existence \& even features of New Dynamics (ND), since they can depend only one amplitude.
$T(P \rightarrow a)=\exp \left(i \delta_{a}\right)\left[T_{a}+\sum_{a j \neq a} T_{a j} \mathrm{i}_{a j, a}{ }^{\text {resc }}\right.$
$T(\bar{P} \rightarrow \bar{a})=\exp \left(i \delta_{a}\right)\left[T^{\star}{ }_{a}+\sum_{a j \neq a} T^{\star}{ }_{a j} i T_{a j, a}{ }^{\text {resc }}\right]$
$\Delta \gamma(a)=|T(\bar{P} \rightarrow \bar{a})|^{2}-|T(P \rightarrow a)|^{2}=4 \sum_{a j \neq a} T_{a j, a}$ res $\operatorname{Im} T^{*}{ }_{a} T_{a j}$
without non-zero re-scattering direct CP asymmetries cannot happen, even if there are weak phases.
-- large impact of strong re-scattering
-- in particular about ` fuzzy' difference between U-spin \& V-spin symmetries;

My goal is to measure CP asymmetries to probe existence \& even features of New Dynamics (ND), since they can depend only one amplitude.
$T(P \rightarrow a)=\exp \left(i \delta_{a}\right)\left[T_{a}+\sum_{a j \neq a} T_{a j}{ } T_{a j, a}\right.$ resc
$T(\bar{P} \rightarrow \bar{a})=\exp \left(i \delta_{a}\right)\left[T^{\star}{ }_{a}+\sum_{a j \neq a} T^{\star}{ }_{a j} i T_{a j, a}{ }^{\text {resc }}\right]$
$\Delta \gamma(a)=|T(\bar{P} \rightarrow \bar{a})|^{2}-|T(P \rightarrow a)|^{2}=4 \sum_{a j \neq a} T_{a j, a}$ res $\operatorname{Im} T^{*}{ }_{a} T_{a j}$
without non-zero re-scattering direct CP asymmetries cannot happen, even if there are weak phases.
-- large impact of strong re-scattering
-- in particular about ` fuzzy' difference between U-spin \& V-spin symmetries;
I disagree about our control of penguin diagrams in even semiquantitatively in 2-body FS for $\Delta C \neq 0 \ddagger \Delta \mathrm{~B}$.
(II) Duality: exclusive vs. inclusive for $V_{q b}, q=c, u$
-- it seems the difference between exclusive vs. inclusive for $V_{c b}$ is smaller now
-- the difference between exclusive vs. inclusive for $V_{u b}$ has not changed;
(II) Duality: exclusive vs. inclusive for $V_{q b}, q=c, u$
-- it seems the difference between exclusive vs. inclusive for $V_{c b}$ is smaller now
-- the difference between exclusive vs. inclusive for $V_{u b}$ has not changed;
-- has been probed with B $\rightarrow \mid v \pi$'s
-- it seems the difference between exclusive vs. inclusive for $V_{c b}$ is smaller now
-- the difference between exclusive vs. inclusive for $V_{u b}$ has not changed;
-- has been probed with B-> | v π 's
but not

$$
B \rightarrow H^{-} v \bar{K} K / H v \bar{K} K \pi
$$

Real $\left|V_{u b}\right|_{\text {incl. }}$ might be smaller than thought before
(II) Duality: exclusive vs. inclusive for $V_{q b}, q=c, u$
-- it seems the difference between exclusive vs. inclusive for $V_{\text {cb }}$ is smaller now
-- the difference between exclusive vs. inclusive for $V_{u b}$ has not changed;
-- has been probed with $B \rightarrow \mid v \pi$'s
but not

$$
B \rightarrow I^{-} v \bar{K} K / I^{-} v \bar{K} K \pi
$$

Real $\left|V_{u b}\right|_{\text {incl. }}$ might be smaller than thought before
-- challenge for 'duality' close to thresholds
at least novel lessons of non-perturb. QCD

(III) 2-vs. 3- \& 4-body Final States in non-leptonic decays for $\Delta B \neq 0 \neq \Delta C$ Hadrons

Probing final states with 2 hadrons (including narrow resonances) is not trivial to measure CPV; on the other hand one gets 'just' numbers.

However 3- \& 4-body FS are described by two-\& more dimensional plots.
: Price:
lots of work both for experimenters \& theorists
() Prize:
find existence \& features of New Dynamics (ND)!

(III.1) $\mathrm{B}^{+/-}->\mathrm{K}^{+/-\pi^{+} \pi^{-}}$vs. $\mathrm{B}+/-\rightarrow \mathrm{K}+/-\mathrm{K}+\mathrm{K}-$

Data about rates:
$B R\left(B+->K^{+} \pi^{+} \pi^{-}\right)=(5.10 \pm 0.29) \times 10^{-5}$;
$B R\left(B+->K^{+} K+K-\right)=(3.37 \pm 0.22) \times 10^{-5}$;
not surprising at all averaged CP asymmetries
$\Delta A_{C P}\left(B+->K^{+} \pi^{+} \pi^{-}\right)=+0.032 \pm 0.008 \pm 0.004 \pm 0.007 ;$ $\Delta A_{C P}\left(B+->K^{+} K^{+} K^{-}\right)=-0.043 \pm 0.009 \pm 0.003 \pm 0.007$;
it is okay

(III.1) $\mathrm{B}^{+/-}->\mathrm{K}^{+/-\pi^{+} \pi^{-}}$vs. $\mathrm{B}^{+/-}->\mathrm{K}+/-K+K-$

Data about rates:
$B R\left(B+->K^{+} \pi^{+} \pi^{-}\right)=(5.10 \pm 0.29) \times 10^{-5}$;
$B R\left(B+->K^{+} K+K-\right)=(3.37 \pm 0.22) \times 10^{-5}$;
not surprising at all
averaged CP asymmetries
$\Delta A_{C P}\left(B+->K^{+} \pi^{+} \pi^{-}\right)=+0.032 \pm 0.008 \pm 0.004 \pm 0.007 ;$
$\Delta A_{c P}\left(B+->K^{+} K^{+} K^{-}\right)=-0.043 \pm 0.009 \pm 0.003 \pm 0.007$;
it is okay
regional CP asymmetries
$\left.\Delta A_{C P}\left(B+->K^{+} \pi^{+} \pi^{-}\right)\right|_{\text {regional }}=+0.678 \pm 0.078 \pm 0.032 \pm 0.007 ;$
$\left.\Delta A_{C P}\left(B+->K^{+} K^{+} K^{-}\right)\right|_{\text {regional }}=-0.226 \pm 0.020 \pm 0.004 \pm 0.007$;
Very surprising for me due to two connected points:
-- the centers of the Dalitz plots are mostly empty
-- the differences are so huge!

"ND by Cunning '17"

(III.2) $\mathrm{B}^{+/-}->\pi^{+/-\pi+\pi-v s . ~} \mathrm{~B}^{+/-}->\pi^{+/-K+K-}$

Data about rates:

$$
\begin{aligned}
& \operatorname{BR}\left(B+->\pi^{+} \pi^{+} \pi^{-}\right)=(1.52 \pm 0.14) \times 10^{-5} ; \\
& B R\left(B+->\pi^{+} K+K-\right)=(0.50 \pm 0.07) \times 10^{-5} ;
\end{aligned}
$$

not surprising
averaged $C P$ asymmetries
$\Delta A_{C P}\left(B+->\pi^{+} \pi^{+} \pi^{-}\right)=+0.117 \pm 0.021 \pm 0.009 \pm 0.007 ;$
$\Delta A_{C P}\left(B+->\pi^{+} K^{+} K^{-}\right)=-0.141 \pm 0.040 \pm 0.018 \pm 0.007 ;$
surprising

$$
\text { (III.2) } \mathrm{B}^{+/-}->\pi^{+/-\pi+\pi-v s . ~} \mathrm{~B}^{+/-}->\pi^{+/-K+K}-
$$

Data about rates:
$B R\left(B+->\pi^{+} \pi^{+} \pi^{-}\right)=(1.52 \pm 0.14) \times 10^{-5}$;
$B R\left(B+->\pi^{+} K+K-\right)=(0.50 \pm 0.07) \times 10^{-5}$;
not surprising
averaged CP asymmetries
$\Delta A_{c P}\left(B+->\pi^{+} \pi^{+} \pi^{-}\right)=+0.117 \pm 0.021 \pm 0.009 \pm 0.007 ;$
$\Delta A_{c P}\left(B+->\pi^{+} K^{+} K^{-}\right)=-0.141 \pm 0.040 \pm 0.018 \pm 0.007 ;$
surprising
regional CP asymmetries
$\left.\Delta A_{C P}\left(B+\rightarrow \pi^{+} \pi^{+} \pi^{-}\right)\right|_{\text {regional }}=+0.584 \pm 0.082 \pm 0.027 \pm 0.007$;
$\left.\Delta A_{C P}\left(B+->\pi^{+} K^{+} K^{-}\right)\right|_{\text {regional }}=-0.648 \pm 0.070 \pm 0.013 \pm 0.007$;
Very surprising for me due to two connected points:
-- the centers of the Dalitz plots are mostly empty
-- the differences are so huge!
"ND by Cunning '17"

(IV) New Alliance between Hadrodynamics \& HEP

these connections are more subtle than looking at diagrams; it connects two worlds of theorists with a different landscape -- HEP theorists work with quarks.
-- hadrodynamics theorists work using pions, kaon exchanges Probing final states with 2 hadrons (including narrow resonances) is not trivial to measure CPV; on the other hand one gets `just' numbers.

(IV) New Alliance between Hadrodynamics \& HEP

these connections are more subtle than looking at diagrams;
it connects two worlds of theorists with a different landscape -- HEP theorists work with quarks.
-- hadrodynamics theorists work using pions, kaon exchanges Probing final states with 2 hadrons (including narrow resonances) is not trivial to measure CPV; on the other hand one gets 'just' numbers.
3- \& 4-body FS are described by 2-\& more dimensional plots.
There is a prize to deal with much more data:
-- unitary
-- chiral symmetry: pions [+++], kaons [++/+],
-- dispersion relations ...
-- fitting the data is the $2^{\text {nd }}$ step, but not the final one!
! Correlations \& Judgement!

[^0]Example:
LHCb Collab. PRL 110 (2013) 221601:
$A_{C P}\left(B_{s}->K^{-} \pi^{+}\right)=0.27 \pm 0.04 \pm 0.01, A_{C P}\left(B_{d^{-}}->K^{+} \pi^{-}\right)=-0.080 \pm 0.007 \pm 0.03$

$$
\Delta_{L H C b}=-0.02 \pm 0.05 \pm 0.04
$$

"These results allow a stringent test of the validity of the ..."
Look at the real eq.:

$$
\Delta=A_{C P}\left(B_{d}->K+\pi-\right) / A_{C P}\left(B_{s}->K-\pi+\right)+\Gamma\left(B_{s}->K-\pi+\right) / \Gamma\left(B_{d}->K+\pi-\right)=0
$$ to get opposite signs in the SM is obvious; however

-- it is a test of the model of U-spin broken symmetry.
-- The job was done by probing 2-body FS?

Quote of Marinus
(~468 AD student of Proklos, known Neoplatonist Philosopher):
" Only being good is one thing -
but good doing it is the other one! "
"Bridge between Hadrodynamics \& HEP"
or
"Lot of Water still Passing under the Bridge"
"ND by Cunning '17"
"The School of Athens"

"ND by Cunning '17"

New Alliance between Hadrodynamics/MEP \& HEP (\& LQCD)

'Applications of QFT to Phenomenology'

"ND by Cunning '17"

[^0]: "ND by Cunning '17"

