
ROOT TUTORIAL
Dirk Krücker, Kelly Beernaert, Ilya Bobovnikov

https://indico.desy.de/conferenceDisplay.py?confId=15780

July 21th, 2016 DESY Summer Student Program 2016

What is ROOT?
2

¨  ROOT is the Swiss Army Knife of High Energy
Physics

¨  It will be with you
for the rest of your
scientific career
in HEP

What is ROOT
3

¨  The Higgs has been “discovered” in a ROOT plot

What is ROOT
4

What is ROOT
5

¨  more plots in 3D

What is ROOT
6

¨  Data format for the LHC experiements

ROOT

¨  ROOT is an analysis software that is used extensively in
particle physics

¨  The three main aspects are:
¤ Graphic/Plotting

n  Various 1-dim up to n-dim histogram formats
n  Graphs and functions

¤ Data analysis
n  Math libraries
n  Statistical libraries such as RooFit /RooStat
n  TMVA (neural network, boosted decision trees, etc.)

¤ Data storage
n  Data structures for event-based data analysis

¨  C++11 and python (PyRoot) can both be used

7

What is ROOT
8

¨  ROOT is the Swiss Army Knife of High Energy
Physics

¨  BUT it does not looks like this

What is ROOT
9

¨  ROOT is the Swiss Army Knife of High Energy
Physics

¨  BUT it does not looks like this

But like this

¨  We try to help
you to take your
first steps into
the ROOT Jungle

Some technical details

¨  Connect to your DESY account
or install ROOT on your notebook

¨  Code examples throughout the talk with colors

¨  Setup the needed software on a DESY machine

¨  WG server depending on your group CMS/Belle

¤  ssh –X nafhh-cms0x.desy.de
x=2-5

¤  ssh –X nafhh-bele0x.desy.de
where x=1,2

module avail
module load root6

Execute this Some example code

10

Installation on your laptop (maybe for later)

¨  Installation
¤  A recent version of ROOT 6 can be obtained from

https://root.cern.ch/content/release-60606
as binaries for Linux, (Windows only ROOT 5) and Mac OS X
and as source code.

¨  Linux - Ubuntu
¤  Ready-to-use packages of ROOT are available for Ubuntu.

They can be installed with:

¨  Windows
¤  For Windows the following software needs to be downloaded and

installed: ROOT 5.34:
ftp://root.cern.ch/root/root_v5.34.10.win32.vc10.msi

¤  In addition, you would need Python:
https://www.python.org/downloads/

¤  Better use an X11 server e.g. MobaXterm
and login on a DESY Linux server

sudo apt-get install root-system

11

Get Connected
12

¨  Everybody ready to start a ROOT session ????

Getting started: C++

¨  ROOT is prompt based and speaks C++

¨  Quit the root session

¨  External macros

$ root -l
root [0] gROOT->GetVersion()
(const char *) "6.02/05”
root [1] sqrt(9) + 4
(const double)7.0000000000000000e+00

root [2] .x Example.C(2)

root [3] .L Example.C
root [4] Example(2)

root [5] .q Create Example.C
 float Example(float x) {
 float x2 = x*x;
 return x2;
}

$ root -l "Example.C(2)"

or

From command line (quotation marks needed if function takes argument):

13

Getting started: C++

¨  In ROOT everything is a class
¤ Either a variable or a pointer

¤ Functionality is implemented
by methods

¨  TAB completion works!!!

¤ 

¤ Tells you which class names exists that start with TH1
¤  which methods are implemented in a class

$ root –l
root [0] TH1F h(“h”,”A histogram”,100,-5,5)
(TH1F &) Name: h Title: A histogram NbinsX: 100

14

TH1F is the histogram class
 (A 1D histogram of floats)
“h” is the unique internal name
 you give it as a reference
“A histogram” a title that will be
 be used for
 drawing
100,-5,5 number of bins
 lower/upper edge
 root [1] h.FillRandom(“gaus”)

root [2] h.Draw()

root [3] TH1[TAB KEY]
root [3] TH1F::[TAB KEY]
root [3] h.[TAB KEY]

root [4] .ls
root [5] .undo // .undo n
root [6] .help

The ROOT home page
15

¨  The ultimate reference
¤ https://root.cern.ch/
¤ https://root.cern.ch/root/html602/ClassIndex.html

¨  Tons of information, tutorials, guides, …

Getting started: PyROOT

¨  Start the python environment and load ROOT

¨  Quit the session

$ python
>>> from ROOT import *
>>> gROOT.GetVersion()
'6.02/05’
>>> sqrt(9) + 4
7.0
>>> help(TH1F)
…
>>> from Example import *
>>> Example(2)
4
>>>

Create Example.py (function)
 def Example(x):
 x2 = x*x
 return x2

>>> quit() (or Ctrl + d)

from ROOT import *
print "Hello World"
for i in range(0,5):
 print i

Create Example2.py (plain macro)

$ python -i Example2.py
 or
>>> from Example import *

16

-i keeps the python prompt open

Comparison: Python vs. C++

¨  Both languages have their pros and cons

¨  You can use ROOT in the C++ way or through Python

¤  Python is easier for beginners – This is what we do in the exercises
¤  ROOT is C++ code
¤ Depends on the group you work with

Python C/C++

interpreted compiled but
BUT ROOT comes with an interpreter

slower execution of python code fast

dynamic typing /checks at runtime strict type checking at compile time

automatic memory management manual memory management

blocks separated by indentation code blocks separated by {}

17

 Python C++

//defining a variable
//declare its type!
int a = 1;
float b = 1.5;  
//printing output
cout<<a<<” is not equal "<<b<<endl;  

//importing packages
#include "TH1F.h"

//{} define the commands inside  
//loops/statement

//For loop
for (int i =0; i < 10; i++){
 cout << i << endl;}
//if/else statements
 if (b == c){
 cout<<"they are equal"<<endl;}
 else if (b > c){
 cout<<"b is bigger"<<endl;}
 else{
 cout<<"c is bigger"<<endl;}

#defining a variable
#just use it
a = 1
b = 1.5
#printing things to the screen
print a, "is not equal", b

#importing functions/classes
from ROOT import TH1F

#Indentation defines commands  
#loops/statement

#For loop
for i in range(0,10):
 print i
#if/else statements
if b == c:
 print "they are equal"
elif b > c:
 print "b is bigger"
else:
 print "c is bigger"

18

Basic classes in ROOT

¨  TObject: base class for all ROOT objects
¨  TH1: base class for 1-, 2-, 3-D Histograms
¨  TStyle: class for style of histograms, axis, title, markers, etc…
¨  TCanvas: class for graphical display
¨  TGraph: class of graphic object based on x and y arrays
¨  TF1: base class for functions
¨  TFile: class for reading/writing root files
¨  TTree: basic storage format in ROOT
¨  TMath: class for math routines
¨  TRandom3: random generator class
¨  TBrowser: browse your files

Complete list: http://root.cern.ch/root/html/ClassIndex.html

19

Histograms

¨  A histogram is just occurrence counting, i.e. how
often a certain outcome appears

Bin	 Count	
[-3.5, -2.5]	 9	
[-2.5, -1.5]	 32	
[-1.5, -0.5]	 109	
[-0.5, 0.5]	 180	
[0.5, 1.5]	 132	
[1.5, 2.5]	 34	
[2.5, 3.5]	 4	

-3
-3.3

2
2.5
-1
1.4
3.4
-2.9
3.3
3.2
3.4
-2.9

2
2.5
-1
….

20

Histograms in ROOT
¨  Histograms can be:

¤  Standard classes: 1D (TH1), 2D (TH2), 3D(TH3)

¤  Content: integers (TH1I), floats (TH1F), double (TH1D)

>>> from ROOT import *
>>> hist = TH1F("hist", "title; x value; y value", 20, 0, 5)

>>> hist.Fill(2)
>>> hist.Fill(2.5,0.5) >>> hist.SetBinContent(2,2)

hist
Entries 1
Mean 0.375
RMS 0

 x value
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 y
va

lu
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
hist

Entries 1
Mean 0.375
RMS 0

title
hist

Entries 2
Mean 2.167
RMS 0.2357

 x value
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 y
va

lu
e

0

0.2

0.4

0.6

0.8

1
hist

Entries 2
Mean 2.167
RMS 0.2357

title

Increase bin at x value by
1 (default) (or 0.5 “weight”)

Set content of bin 2, which corresponds
to values 0.25 < x < 0.5, to 2

21

Histograms in ROOT

hist
Entries 1000
Mean 0.009204
RMS 0.9861

 x value
-3 -2 -1 0 1 2 3

 n
um

be
r o

f e
nt

rie
s

0

5

10

15

20

25

30

35
hist

Entries 1000
Mean 0.009204
RMS 0.9861

Gaussian

¨  Fill histogram according to Gaussian distribution
with 1000 entries and extract mean and RMS

>>> hist.GetBinContent(58)
34.0
>>> hist.GetMean()
0.009204489559116142
>>> hist.GetRMS()
0.986066762844140

>>> from ROOT import *
>>> hist = TH1F("hist", "Gaussian; x value; number of entries", 100, -3, 3)
>>> hist.FillRandom("gaus", 10000)
>>> hist.Draw()

One can always combine bins (rebin) but not the other way around

22

>>> #Change binning of histogram
>>> hist.Rebin(2)
>>> #Multiply each bin by factor
>>> hist.Scale(2)

Histograms styles
23

>>> hist.Draw("OPTION") https://root.cern.ch/root/html/THistPainter.html

Option	 Explanation	
"E" Draw error bars.	

"HIST" When an histogram has errors it is visualized by default with error bars.
To visualize it without errors use the option "HIST".	

"SAME" Superimpose on previous picture in the same pad.	
"TEXT" Draw bin contents as text.	

Options just for TH1	
"C" Draw a smooth Curve through the histogram bins.	
"E0" Draw error bars. Markers are drawn for bins with 0 contents.	
"E1" Draw error bars with perpendicular lines at the edges.	
"E2" Draw error bars with rectangles.	
"E3" Draw a fill area through the end points of the vertical error bars.	
"E4" Draw a smoothed filled area through the end points of the error bars.	

Options just for TH2	
"COL" A box is drawn for each cell with a color scale varying with contents. 	
"COLZ" Same as "COL". In addition the color palette is also drawn.	
"CONT" Draw a contour plot (same as CONT0).	
"SURF" Draw a surface plot with hidden line removal.	

Exercise: Histograms
Write a python macro ExerciseHist.py
1.  Create a histogram with 10 bins ranging

from 0. to 100. with title/x-axis label "x"
2.  Fill the histogram at the following numbers:

11.3, 25.4, 18.1
3.  Fill the histogram with the square of all

integers from 0. to 9.
(Hint: A simple loop will save you from
typing several lines of code)

4.  Draw the histogram.
5.  Calculate the mean value and the rms and

show it on the screen.
 print mean, rms

6.  Calculate the integral of the histogram.
7.  Identify the bin with the maximum number

of entries.
8.  Find the maximum bin content.
9.  Set the y-axis label to "entries".
10.  Set the line color of the histogram to red.
11.  Run with

python -i ExerciseHist.py

¨  One dimensional histogram TH1F.
¨  Constructor of a histogram:

TH1F::TH1F(const char* name, const char* title, Int_t nbinsx,
Double_t xlow, Double_t xup).

¨  Fill a histogram: Int_t TH1F::Fill(Double_t x)

¨  Draw a histogram: void TH1F::Draw(Option_t* option = "")
¨  Mean of a histogram:

Double_t TH1F::GetMean(Int_t axis = 1) const
¨  RMS of a histogram:

Double_t TH1F::GetRMS(Int_t axis = 1) const

¨  Mode of a histogram: Int_t TH1F::GetMaximumBin() const
¨  Get the bin content of a histogram:

Double_t TH1F::GetBinContent(Int_t bin) const
¨  Integral of a histogram:

Double_t TH1F::Integral(Option_t* option = "") const
¨  Y-axis used to draw the histogram:

TAxis* TH1F::GetYaxis() const
¨  Access axis and set label void TAxis::SetTitle(char*)
¨  Change line color of the histogram:

void TAttLine::SetLineColor(Color_t lcolor).
The color index for red is named kRed.

24

histogram1
Entries 13
Mean 26.14
RMS 24.1

x
0 10 20 30 40 50 60 70 80 90 100

en
tri

es

0

0.5

1

1.5

2

2.5

3

3.5

4
histogram1

Entries 13
Mean 26.14
RMS 24.1

Exercise: Histograms
25

Canvas and Legends in ROOT

¨  ROOT distinguishes between a histogram and a
“canvas” where is histogram is drawn on

¨  Multiple histograms (and other objects) can be
drawn on the same canvas with Draw(“same”)

¨  Legends can be added to the canvas

>>> from ROOT import *
>>> c = TCanvas("canvas", "canvas", 800 , 600)
...
...
>>> legend = TLegend(0.16, 0.63, 0.45, 0.91)
>>> legend.AddEntry(hist1, "Gaussian", "l")
>>> legend.AddEntry(hist2, "Polynomial", "l")
>>> legend.Draw()

26

Exercise: Canvas and Legends
Write a python macro ExerciseCanvas.py:

¨  Create two histograms with 50 bins ranging from -3. to 3. with two different names
¨  Fill first histogram with Gaussian distribution with 1000 entries
¨  Fill second histogram with a second order polynomial and 500 entries

¤  hist2.FillRandom("pol2", 500)  

¨  Create a TCanvas c1 and draw both histograms (option "same")
¨  Set the line color of the first histogram to kRed and the second to kBlue

¨  Clone both histograms

¤  hist1b = hist1.Clone()

¨  Scale both cloned histograms by the inverse of their respective integral, i.e. normalise them to
unit area.

¨  Create a TCanvas c2 and draw both cloned histograms
¨  Create a legend at position (0.16, 0.63, 0.45, 0.91) and add entries for both histograms to it.

Draw the legend.
¨  Save both canvases as pdf files and as root file

¤  c.Print("filename.pdf")
¤  c.SaveAs("filename.root")

27

Exercise: Canvas and Legends

x value
-3 -2 -1 0 1 2 3

 y
 v

al
ue

0

10

20

30

40

50

60

Gaussian
hist

Entries 1000
Mean 0.009227
RMS 0.987

Gaussian

x value
-3 -2 -1 0 1 2 3

 y
 v

al
ue

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Gaussian
hist

Entries 1000
Mean 0.009227
RMS 0.987

Gaussian

Polynomial

Gaussian

c1

c2

28

BTW.: errors by default are sqrt(nbin)

Graphical User Interface (GUI)

¨  GUI can be used for visualization and adjustment of
styles or plotting on the fly

>>> from ROOT import *
>>> b = TBrowser()
>>> f = TFile("filename.root")

Right click on the lines of hist1
è SetLineColor opens color panel

29

Graphical User Interface (GUI)

¨  Sometimes changing things by hand are much easier
¤  Position of legends (coordinates are given as

percentage with respect to the boundaries of the plot)
¤  Font sizes of axis labels, offset of lables

¨  Make the change manually
¨  Save the canvas as a .C file
¨  Find the code, import the settings back

New legend position
and settings: white bkg
and line color

30

Graphs in ROOT

¨  Three main classes for graphs TGraph,
TGraphErrors, TGraphAsymmetricErrors

¨  Graphs are used to display value pairs, errors can be
defined to be either symmetric or antisymmetric

>>> from ROOT import *
>>> #create graph with 3 points
>>> graph = TGraph(3)
>>> #set three points of the graph
>>> graph.SetPoint(0, 3.0, 2.1)
>>> graph.SetPoint(1, 5.0, 2.9)
>>> graph.SetPoint(2, 7.2, 3.5)
>>> #set styles
>>> graph.SetMarkerStyle(21)
>>> graph.SetMarkerSize(1)
>>> #Draw axis (A), points (P), and line (L)
>>> graph.Draw("APL") 3 4 5 6 7

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Graph

31

Functions in ROOT

¨  Classes for TF1, TF2, TF3 for 1 to 3 dimensional functions
>>> from ROOT import *
>>> #Use of predefined functions “gaus”, “pol1”,”pol3”, etc.
>>> fGaus = TF1("fGaus", "gaus", -2, 2)

>>> #Use of custom user functions
>>> f = TF1("f","[0]*exp(-0.5*((x-[1])/[2])^2)", -2, 2)

>>> #Setting the parameters
>>> f.SetParameter(0,20)
>>> f.SetParameter(1,0)
>>> f.SetParameter(2,1)

>>> fGaus.SetParameter(0,10)
>>> fGaus.SetParameter(1,0)
>>> fGaus.SetParameter(2,1)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

5

10

15

20

25

[0]*exp(-0.5*((x-[1])/[2])^2)

[0]*exp(-0.5*((x-[1])/[2])^2)

gaus

32

Fitting in ROOT

>>> hist.Fit("fGaus")
 FCN=97.4876 FROM MIGRAD STATUS=CONVERGED 67 CALLS 68 TOTAL
 EDM=3.44445e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
 EXT PARAMETER STEP FIRST
 NO. NAME VALUE ERROR SIZE DERIVATIVE
 1 Constant 2.29946e+01 1.02159e+00 3.70880e-03 2.59473e-04
 2 Mean -2.11506e-03 3.28869e-02 1.58874e-04 5.12360e-03
 3 Sigma 9.50152e-01 3.00472e-02 3.74233e-05 1.80927e-02
<ROOT.TFitResultPtr object at 0x7fa0db5b9e70>

hist
Entries 1000
Mean 0.009204
RMS 0.9861

 x value
-3 -2 -1 0 1 2 3

 n
um

be
r o

f e
nt

rie
s

0

5

10

15

20

25

30

35
hist

Entries 1000
Mean 0.009204
RMS 0.9861

Gaussian>>> hist.Draw()
>>> fGaus.Draw("same")

33

Exercise: Graphs and Fits

Write a python macro ExerciseGraph.py:

¨  Create a graph with symmetric errors and 5
points.

¨  Set the following points (0-4): (1.0, 2.1),
(2.0, 2.9), (3.0, 4.05), (4.0, 5.2), (5.0, 5.95)

¨  Set the errors on x to 0.0 and the errors on
y to 0.1.

¨  Draw the graph including the axes and error
bars.

¨  Create a one dimensional function
f(x)=mx + b and fit it to the graph.

¨  Obtain the two parameters a and b from
the function and their estimated
uncertainties.

¨  A one dimensional graph TGraphErrors.

¨  A constructor of a graph:
TGraphErrors::TGraphErrors(Int_t n).

¨  A method to set the points of a graph:
void TGraphErrors::SetPoint(Int_t i, Double_t x,
Double_t y).

¨  A method to set the errors of a graph:
void TGraphErrors::SetPointError(int i,Double_t ex,
Double_t ey).

¨  A method to fit a graph with a function:
TFitResultPtr TGraphErrors::Fit(const char *fname,
Option_t *option, Option_t *, Axis_t xmin, Axis_t
xmax).

¨  A method to return the parameters of a function:
Double_t TF1::GetParameter(Int_t ipar).

¨  A method to return the errors on the parameters of a
function: Double_t TF1:GetParError(Int_t ipar) const .

34

Exercise: Graphs and Fits
35

x-axis
1 1.5 2 2.5 3 3.5 4 4.5 5

y-
ax
is

2

2.5

3

3.5

4

4.5

5

5.5

6

Graph

¨  TFile is basic I/O format in root
¤ Open an existing file (read only)

n  InFile = TFile(“myfile.root”, “OPTION”)
n  OPTION = leave blank (read only), “RECREATE” (replace file),
“UPDATE” (append to file)

n  Files can contain directories, histograms and trees (ntuples) etc.

¨  ROOT stores data in TTree format
¤ Tree has “entries” (e.g. collision events)

each with identical data structure
¤ Can contain floats, integers, or more complex objects

(whole classes, vectors, etc…)
¤ TNtuple is a tree that contains only floats

Classes: TFile and TTree
36

Creating a TTree from text file

¨  Copy the following text file

¤  cp /afs/desy.de/user/k/kruecker/public/sst2016_root/basic.dat .

¤  Or from this link

>>> from ROOT import *
>>> f = TFile("ntuple.root","RECREATE")
>>> t = TTree("ntuple","reading data from ascii file")
>>> t.ReadFile("basic.dat","x:y:z")
>>> t.Write()

[nafhh-cms02] ~ more basic.dat
-1.102279 -1.799389 4.452822
1.867178 -0.596622 3.842313
-0.524181 1.868521 3.766139
-0.380611 0.969128 1.084074
0.552454 -0.212309 0.350281
-0.184954 1.187305 1.443902
0.205643 -0.770148 0.635417

37

Working with TTrees
¨  Get the following root file (or use from previous page)

¤  cp /afs/desy.de/user/k/kruecker/public/sst2016_root/basic.root .

>>> from ROOT import *
>>> f = TFile("basic.root")
>>> t = f.Get("ntuple")

>>> t.Show(2)
======> EVENT:2
 x = -0.524181
 y = 1.86852
 z = 3.76614

>>> t.Scan()
**
* Row * x * y * z *
**
* 0 * -1.102278 * -1.799389 * 4.4528222 *
* 1 * 1.8671779 * -0.596621 * 3.8423130 *
* 2 * -0.524181 * 1.8685209 * 3.7661390 *
* 3 * -0.380611 * 0.9691280 * 1.0840740 *

Shows the content and structure
of the tree for one entry

Shows one or multiple
variables for all entries

38

Plotting quantities directly from TTrees

>>> T.Draw("x:y","","colz”)

>>> t.Draw("x","fabs(y) < 1.4","")
829L

number tells
you how
many entries
passed condition

htemp
Entries 1000
Mean 0.01592
RMS 1.009

x
-4 -3 -2 -1 0 1 2 30

5

10

15

20

25

30

35

htemp
Entries 1000
Mean 0.01592
RMS 1.009

x

htemp
Entries 828
Mean 0.03963
RMS 0.7085

x
-1.5 -1 -0.5 0 0.5 1 1.50

2

4

6

8

10

12

14

16

18

20
htemp

Entries 828
Mean 0.03963
RMS 0.7085

x {fabs(x) < 1.4}

y
-5 -4 -3 -2 -1 0 1 2 3

x

-4

-3

-2

-1

0

1

2

3

0

2

4

6

8

10

12

x:y

>>> t.Draw("x") Scatter plot shows the
correlation between variables

39

TTree functions (very useful for quick checks)

Command 	 Action 	
t.Print() Prints the content of the tree 	
t.Scan() Scans the rows and columns 	
t.Draw("x") Draw a branch of tree 	

How to apply cuts:
t.Draw("x", "x>0")  
t.Draw("x", "x>0 && y>0")

Draw “x” when “x>0”	
Draw “x” when both x >0 and y >0 	

t.Draw("y", "", "same") Superimpose “y” on “x” 	
t.Draw("y:x") Make “y vs x” 2d scatter plot 	
t.Draw("z:y:x") Make “z:y:x” 3d plot 	
t.Draw("sqrt(x*x+y*y)") Plot calculated quantity 	
t.Draw("x>>h1") Dump a root branch to a histogram 	

40

Looping through entries of a TTree

>>> from ROOT import *
>>> f = TFile("basic.root")
>>> t = f.Get("ntuple")
>>> nEntries = t.GetEntries()
>>> hist = TH1D("x", "x",40,-4,4)
>>> for i in range(0,nEntries):
... entry = t.GetEntry(i)
... hist.Fill(t.x)
...
>>> hist.Draw()

x
Entries 1000
Mean 0.01592
RMS 1.009

-4 -3 -2 -1 0 1 2 3 40

10

20

30

40

50

60

70

80

x
Entries 1000
Mean 0.01592
RMS 1.009

x

41

https://root.cern.ch/courses
Have fun!

The End 42

