Karlsruhe Institute of Technology ’HE
[
L]

Thrill

Distributed Big Data Batch Processing in C++

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students | 2016-10-06

INSTITUTE OF THEORETICAL INFORMATICS — ALGORITHMICS

.

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

http://www.kit.edu

Algorithmic Big Data Batch Processing~XIT

g _
(TN New Project:
Thrill 5§

Current Status:

® open-source C++14,
http://github.com/thrill,

w works well on Linux, MacOSX, | | Apache | |Apache
and Windows, Spark <7/ | Flink &

m k-means tutorial available. MapReduce
= Tech Report arXiv:1608.05634 Hadoop &
"Low Level I

Difficult Interface

High Level
Simple

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students — Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics — Algorithmics October 6th, 2016 2/19

http://github.com/thrill
https://arxiv.org/abs/1608.05634

Thrill’s Design Goals KT

® A new and easier way to program distributed algorithms.
@ Distributed arrays of small items (characters or integers).
® High-performance, parallelized C++ operations.

® Locality-aware, in-memory computation.

@ Transparently use disk if needed
= external memory algorithms.

® Avoid all unnecessary round trips of data to memory (or disk).
® Optimize chaining of local operations.
Current Status:

® Prototype at http://project-thrill.org and Github.

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students — Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics — Algorithmics October 6th, 2016 3/19

http://project-thrill.org

Execution on Cluster A“("

cores
PPPT 2P0 PP eete
Compute Compute Compute Compute
S| S S| 06l

network

® Compile program into one binary, running on all hosts.
@ Collective coordination of work on compute hosts, like MPI.
@ Control flow is decided on by using C++ statements.

@ Runs on MPI HPC clusters and on Amazon’s EC2 cloud.

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students — Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics — Algorithmics October 6th, 2016 4/19

Distributed Immutable Array (DIA) AIT

® User Programmer’s View:
® DIA<T> = result of an operation (local or distributed).
® Model: distributed array of items T on the cluster
m Cannot access items directly, instead use transformations

and actions.
PEO PE1 PE2 PE3
A T T T
AMap(-)=:B [ITITIITITITTT T TTTII T ITIL]
v%%
B.Sort(:) = C [TTTTTTITTIT LI I TTT T TTTT]

® Framework Designer’s View:

® Goals: distribute work, optimize execution on cluster, add
redundancy where applicable. =—> build data-flow graph.

@ DIA<T> = chain of computation items

@ Let distributed operations choose “materialization”.

Distributed Immutable Array (DIA)

® User Programmer’s View:

® DIA<T> = result of an operation (local or distributed).
® Model: distributed array of items T on the cluster

m Cannot access items directly, instea A
and actions.
JUSHNT—L -
LOSOLL L

AMap(-)=B [TITIIT I IITIITI[] C := B. Sort()

e T

B.Sort() = C [TTTTTTHTIILIT]])

C

® Framework Designer’s View:

® Goals: distribute work, optimize execution on cluster, add
redundancy where applicable. =—> build data-flow graph.
@ DIA<T> = chain of computation items

-

J

@ Let distributed operations choose “materialization”.

List of Primitives ﬂ("

® Local Operations (LOp): input is one item, output > 0 items.
Map(), Filter(), FlatMap().

® Distributed Operations (DOp): input is a DIA, output is a DIA.

Sort() Sort a DIA using comparisons.
ReduceBy() Shuffle with Key Extractor, Hasher, and
associative Reducer.

GroupBy() Like ReduceBy, but with a general Reducer.
PrefixSum() Compute (generalized) prefix sum on DIA.

Window,() Scan all k consecutive DIA items.

Zip() Combine equal sized DIAs item-wise.

Merge() Merge equal typed DIAs using comparisons.

® Actions: input is a DIA, output: > 0 items on master.
Min(), Max(), Sum(), Sample(), pretty much still open.

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students — Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics — Algorithmics October 6th, 2016 6/19

Local Operations (LOps) T

Map(f) : (A) — (B) FlatMap(f) : (A) — (B)
f:A—B f: A— array(B)

2000 Tl opom
[

Currently: no rebalancing during LOps.

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students — Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics — Algorithmics October 6th, 2016 7/19

DOps: ReduceByKey ﬂ("

ReduceByKey(k, r) : (A) — (A)
k:A—K key extractor
r:AxA— A reduction

(k7) (Ka) (Ks) (ko) (K2)

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students — Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics — Algorithmics Qctober 6th, 2016 8/19

DOps: GroupByKey ﬂ("

GroupByKey(k, g) : (A) — (B)
k:A—= K key extractor
g : iterable(A) — B group function

DOps: ReduceTolndex T

ReduceTolndex(i, n, r) : (A) — (A)
i:A— {0..n—1} index extractor
n € Ny result size
rr-AxA—A reduction

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students — Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics — Algorithmics Qctober 6th, 2016 10/19

DOps: GroupTolndex

GroupTolndex(i, n, g) : (A) — (B)
i:A— {0..n—1} index extractor
neNg result size

g : iterable(A) — B group function

DOps: Sort and Merge T

Sort(o) : (A) — (A) Merge(0) : (A) x (A)--- — (A)

0: Ax A— {false, true} 0: Ax A— {false, true}
(less) order relation (less) order relation
|a |a|a| a a | a4 | Ao

e ay & @
ala[a]a]a TR

| a&|as|a | 8| A

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students — Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics — Algorithmics Qctober 6th, 2016 12/19

DOps: Zip and Window T

Zip(z) : (A) x (B)--- — (C) Window(k,w) : (A) — (B)
zZ:AxB—C keN window size
zip function w : AK — B window function

[] [] [] [] []

® [® ® []

99999

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students — Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics — Algorithmics October 6th, 2016 13/19

Example: WordCount in Thrill (T

iute of Technology

1 using Pair = std::pair<std::string, size_t>;
2 void WordCount(Context& ctx, std::string input, std::string output) {

auto word_pairs = ReadlLines(ctx, input)
.FlatMap<Pair>(

[J(const std::string& line, auto emit) {
Split(line, ' ', [&](std::string_view sv) {
emit(Pair(sv.to_string(), 1)); });

s
word_pairs.ReduceByKey(

[J(const Pair& p) { return p.first; },

[J(const Pair& a, const Pair& b) {
return Pair(a.first, a.second + b.second);
D
.Map([J(const Pair& p) {
return p.first + ": "
WriteLines(output);

+ std::to_string(p.second); })

Benchmarks A“("

WordCount
® Reduce random text files containing only 1000 words.
PageRank
@ Calculate PageRank using join of current ranks with outgoing
links and reduce by contributions. 10 iterations.

TeraSort
® Distributed (external) sorting of 100 byte random records.

K-Means
® Calculate K-Means clustering with 10 iterations.

Platform: h x r3.8xlarge systems on Amazon EC2 Cloud

a 32 cores, Intel Xeon E5-2670v2, 2.5 GHz clock, 244 GiB RAM,
2 x 320 GB local SSD disk, ~ 400 MiB/s bandwidth
Ethernet network ~ 1000 MiB/s network, Ubuntu 16.04.

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students — Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics — Algorithmics October 6th, 2016 15/19

Experimental Results: Slowdowns

slowdown over fastest

slowdown over fastest

—_
o

(83}

o

WordCount

PageRank

number of hosts h

number of hosts h

—e— Spark (Java) —=— Spark (Scala) —— Flink (Java) —— Flink (Scala) —+— Thrill ‘

T

Karlsruhe Institute of Technology

K-Means Tutorial

Thrill o4
Wodules

Thril Step 1: Generate Random Points

Namespaces Classes | Files Examples Q Search

“Thill Documentation Overview

Gelling Started
v K-Means Tutorial

Step 1: Generate Randorn Poi
Step 2: Pick Random Centers and C

Step 3: ReduceByKey to Caloulate |

Welcome to the first step in the Thrill k-means tutorial. This tutorial will show how to implement the k-means
clustering algorithm (Lloyd's algorithm) in Thrill. |

The algorithm works as follows: Given a set of d-dimensional points, select k initial cluster center points at random.
Then attempt to improve the centers by iteratively calculating new centers. This is done by classifying all points and
associating them with their nearest center, and then taking the mean of all points associated to one cluster as the

Step 4: heration! new center. This will be repeated a constant number of iterations.

Step 5t Input and Output e ;
Bonus Step 6: Boost Qi h G
Thil Layer Architecture : g
Goding Style Guide ;
Modulos di

» Namespaces

Classes
Files

Examples

We will implement this algorithm in Thrill, and only work with two-dimensional points for simplicity. Furthermore, we
will hard-code many constants to make the code easier to understand.

In this step 1, let us start with random points and them for

We first need a Point class to represent the points. We may add some calculation functions to it later on.
//1 A 2-dimensional point with double precision
struct Point
//1 point coordinates
double x, y

i
;| For outputting the Point class, we need to add an operator << for std: :ostream, which is the standard way for

Generated on Tue Sep 202016 19:242 for The by (OPFATIR() 185

Theill Documentation Overview) K-Means Tutorial

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students — Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics — Algorithmics October 6th, 2016 17/19

Current and Future Work A“("

® Open-Source at http://project-thrill.org and Github.
® High quality, very modern C++14 code.

Ideas for Future Work:

@ Native Infiniband Support

@ Distributed rank()/select() and wavelet tree construction.
® Beyond DIA<T>? Graph<V,E>? Matrix<T>?

® Communication efficient distributed operations for Thrill.

Thank you for your attention!

Questions?

Michael Axtmann, Timo Bingmann, Peter Sanders, Sebastian Schlag, and 6 Students — Thrill: Distributed Big Data Batch Processing in C++
Institute of Theoretical Informatics — Algorithmics October 6th, 2016 19/19

http://project-thrill.org

