
Comp-Exe 1: χ2-function and χ2-probability distributions

Macro Chi2 rnd.C

generates χ2 distributions according to χ2 =
∑ndof

i=1 x2, where x

are simple gaussian random numbers (with mean 0 and width 1.). This

corresponds to the χ2 of ndof measurements of an observable (e.g. mea-

suring the electron mass) to the known true value.

• Steering parameters in the macro:

– ndof = Number of measurements

– ntr = Number of repeated experiments

• Output

– Histo chi2h - the resulting χ2 distribution

– Histo pchi2h - the resulting χ2-probability distribution

Tasks:

a) Have a few minutes look in the code and try to understand what’s

going on

b) Run the macro as it is by .x Chi2 rnd.C and plot the histograms by

chi2h→ Draw(); pchi2h→ Draw();

c) Study the mean and rms of the χ2 function and the χ2-probability

distribution versus ndof : run the code repeatedly with ndof set to

(by simple editing) values ndof = 1, 4, 10, 100 and read off from the

chi2h and pchi2h histograms the mean values and RMS and fill

them in the table below. Try to obtain simple scaling laws for the

dependences vs ndof .



χ2 χ2/ndof prob(χ2, n)

Ndof mean rms mean rms mean rms

1

4

10

100

d) Extend the programme (Places are marked in the macro by //*****):

Book and fill histogram of the χ2/ndof distribution and repeat ex-

ercise c) with it and fill resulting mean and rms values in the table

e) Judge on the chances of obtaining the following two χ2 values which

have the same χ2/ndof :

1. ndof = 5, χ2 = 7

2. ndof = 500, χ2 = 700

Hint: the χ2-probability is a good measure for this.



Comp-Exe 2: Toy-experiments of fits of a constant

Macro p0toyf.C generates toy experiments for the fit of a constant

(“p0-fit”) from several measurements of the same resolution. A physics

example for this would be the determination of the (average) vertical

position of a horizontal flying track in track-detectors. Additional Prob-

lem: the detectors are noisy, for each detector sometimes instead of a

good signal hit a flatly distributed noise hit is observed.

• Steering parameters in the macro:

– Ntra = Number of repeated toy experiments (Default is 1000)

– Ndet = Number of measurements (Default is 10)

– frac noise Average fraction of noise hits (Default is 0.)

• Output

– Histo p0d - Distribution of residual: fitted constant - true value

– Histo chi2d - χ2 distribution from the p0-fits

– Histo pchi2d - χ2-probability distribution from the p0-fits

– Histo a - shows the p0-fit for the last toy experiment

Tasks:

• Take a deep breath and have a few minutes look in the code and

try to understand what’s going on

a) Run the macro as it is with .x p0toyf.C and plot the histograms by

p0d→ Draw(); chi2d→ Draw(); pchi2d→ Draw(); a→ Draw();

Fill the RMS value of the p0d histogram in the table below (first row)

and also the mean values of the chi2d and pchi2d distributions.

b) Now edit the macro and set frac noise=0.1;



– run the macro again and fill the obtained values in the table

(second row).

– How much has the RMS of the residuals increased?

– Can you identify the bad track-fits in the pchi2d distribution?

c) Rejection of tracks with bad χ2-probability: Book another residual

histogram p0d rej in the macro:

– fill it only for the case that the χ2-probability is not too small

(see also hints in the code)

– fill in the third row of the table how many tracks survive this

selection and the resulting RMS of the residuals.

d) Hit-outlier-rejection: Advanced method for super experts!

Book another three histograms p0d iter, chi2d iter and pchi2d iter

in the macro and

– try hit outlier rejection and repeating the track-fit (see detailed

instructions in the code);

– fill the resulting RMS of p0d iter into the fourth row of the

table.

– How does the RMS results of this method compare to the other

cases a)-c)?

• Repeat the above exercises b)-d) for increased frac noise=0.5 and

fill the results in the table. How much are the RMS results worse in

this case?

• If time permits repeat the above exercises a)-d) for different number

of detectors ndet = 5 and study how the results change qualitatively.



Task Ndet frac noise
Outlier

rejection
Resid.-distr. #tracks

Resid.

RMS

chi2d

mean

pchi2d

mean

a) 10 0.0 No p0d 1000

b) 10 0.1 No p0d 1000

c) 10 0.1
Reject tracks

with bad pchi2
p0d rej – –

d) 10 0.1
Outlier hit-rejection

and repeated track-fit
p0d iter 1000 – –

b) 10 0.5 No p0d 1000

c) 10 0.5
Reject tracks

with bad pchi2
p0d rej – –

d) 10 0.5
Outlier hit-rejection

and repeated track-fit
p0d iter 1000 – –



Comp-Exe 3: World average of mW

Macro AverageMW.C fits a world average value of mW using five

different results from Tevatron, LEP and NuTeV.

Tasks:

a) Have a brief look in the code and try to understand what’s going on

b) Run the macro as it is by .x AverageMW.C

– Is the obtained χ2 value reasonable?

c) Change in the macro the variable Bool t inclu NuTeV to kFalse (this

takes out the NuTeV result from the fit) and run the macro again:

– How much does the error on mW change?

– Is the obtained χ2 value reasonable?

– Do you think this rejecting of the NuTeV result is justified?



Comp-Exe 4: World average of mK±

Macro AverageMK.C fits a world average value of mK± using six

different measurements.

Tasks:

a) Run the macro as it is by .x AverageMK.C

– Is the obtained χ2 value reasonable?

– Can you identify good candidates for “outliers”?

b) Increase the errors of all measurements in the macro by a common

scaling factor, e.g. MK→SetBinError( i+1, err MK[i]*1.1 ) and run

the macro again and again until you find a scaling factor for which

the resulting χ2/ndof ≈ 1 ⇒ thus obtain a final result a la PDG

(particle data group).



Comp-Exe 5: Straight line trajectory fit

Physics example: A muon track is measured in four layers of streamer

tube detectors at x positions of 4., 5., 6. and 7. (in cm), with a

measurement precision for y of 0.5 cm. The goal is to determine its

trajectory, assuming it to be a straight line.

Macro StraightLineFit.C fits a straight line track trajectory through

four measured points.

• Steering parameters in the macro:

– xmin, xmax = Interval of the trajectory displayed

• Output:

– Histogram data (it’s of the type TGraphErrors)

– Plots are drawn of the

∗ fitted histogram with error bands

∗ error ellipse of the two fitparameters

Tasks:

a) Run the macro as it is by .x StraightLineFit.C and fill the fit results

for p0, p1, their errors and correlation into the table below

b) Precision of trajectory: Evaluate (by eye) from the shown error bands

at which point roughly the trajectory is known best and with which

precision (fill the results in the table below)

c) Precision of extrapolated trajectory: Evaluate the precision of the

extrapolated trajectory at x = 100 (Hint: Change xmax to large

value and run the macro again)



d) Effect of shift of x coordinate origin: Shift all four xV al points in

the macro (simply by overwriting by hand) by a constant value -5.5,

set xmin = −4. and xmax = 4. and run the macro again. Fill the

fit results in the table. Can you explain why the correlation of p0

and p1 has changed?

e) Apply a very precise vertex constraint at the origin: Change N to 5

and add a new first point to the measurement points list with

xV al = 0.0, xErr = 0.0, yV al = 0.0 and yErr = 0.0001 (just

by hand). Run the macro again and write down the fitted results in

the table. How much are the parameter errors reduced by adding

this extra point?



Straight line fit trough four points

Task a)

p0 =

p1 =

corr =

Task b)
x-best precision =

y-error =

Task c) y-error(x = 100) =

Task d)

Shifting all x values by -5.5:

p0 =

p1 =

corr =

Task e)

Adding vertex constraint at x = 0:

p0 =

p1 =

corr =


