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» Lecture I — Basics:

» Introduction
» Monte Carlo techniques

» Lecture II — Perturbative physics
» Hard scattering
» Parton showers
» Lecture IIl — Non—perturbative physics
» Hadronization
» Hadronic decays
» Underlying event
» MC programs
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Basics
» Introduction, motivation

» Monte Carlo event generators
» Monte Carlo methods

» Hit and miss
Simple MC integration

Variance reduction
Multichannel MC

vy Vv Vv
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Thanks to my colleagues

Frank Krauss, Leif Lonnblad, Steve Mrenna, Peter Richardson,
Mike Seymour, Torbjorn Sjostrand.
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We want to understand

%t — Final states .
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LHC experiments require
sound understanding of signals and backgrounds.

1

Full detector simulation.

|

Fully exclusive hadronic final state.

1

Monte Carlo event generator with
parton shower, hadronization model, decays of unstable
particles.

T

Parton level computations.
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real life virtual reality

Machine Event Generator
LHC, Tevatron ... Herwig, Pythia, Sherpa ...
Detector, Data Acquisition Detector Simulation
CMS, ATLAS, CDF ... Geant 4 ...

~. /

Event Reconstruction
ORCA ...

A

Analysis quick and dirty
ROOT ...
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» Complex final states in full detail (jets).
» Arbitrary observables and cuts from final states.
» Studies of new physics models.

» Rates and topologies of final states.

» Background studies.

» Detector Design.

» Detector Performance Studies (Acceptance).

» Obvious for calculation of observables on the quantum

level
|A|* — Probability.
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Partonic cross section from Feynman diagrams
do = doj,qdP(partons — hadrons)

Note, that
/ dP(partons — hadrons) =1,

» o0 remains unchanged
» introduce realistic fluctuations into distributions.
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Divide and conquer

Partonic cross section from Feynman diagrams
do = dopaqdP(partons — hadrons)

Note, that
/ dP(partons — hadrons) =1,

» o0 remains unchanged
» introduce realistic fluctuations into distributions.

Simulation steps governed by different scales
— separation into (Qp ~ 1GeV > Aqcp)

dP(partons — hadrons) = dP(resonance decays) [T > Qo]
x dP(parton shower)  [TeV — Qo]

x dP(hadronisation) [~ Qo]

]

x dP(hadronic decays) [O(MeV)

Stefan Gieseke - DESY MC school 09



dP(partons — hadrons) = dP(resonance decays) T > Qo
x dP(parton shower)  [TeV — Qq
x dP(hadronisation) [~ Qo
x dP(hadronic decays) [O(MeV)

Quite complicated integration.
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dP(partons — hadrons) = dP(resonance decays) T > Qo
x dP(parton shower)  [TeV — Qq
x dP(hadronisation) [~ Qo
x dP(hadronic decays) [O(MeV)

Quite complicated integration.

Monte Carlo is the only choice.
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Introduction to the most important MC sampling
(= integration) techniques.

1. Hit and miss.

2. Simple MC integration.

3. (Some) methods of variance reduction.

4. Multichannel.
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Example: f(x) = cos(x).
1 T T T
0.9

Probability density:

cos(lx)

dP = f(x)dx o

0.7 - 4
. .1s . 0.6 - B
is probability to find value x. o i
0.4 4
0.3 |- 4
0.2 B

0.1 |- 4
0 | | | | | | |
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Example: f(x) = cos(x).

Probability density: . ;
. 0.8

dP = f(x)dx o

. .1s . 0.6
is probability to find value x. E s
x 0.4

F(x) = / Flx)dx 03

X0 0.2

. .. . . . 0.1
is called probability distribution. o

0 02 04 06 08 1 1.2 14
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Example: f(x) = cos(x).

Probability density:
dP = f(x)dx

is probability to find value x. O

. S~

F(x) = / Flx)dx
X0
is called probability distribution.
Probability ~ Area
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Hit and miss method:
» throw N random points
(x,y) into region.
» Count hits Ny,
i.e. whenever y < f(x).

Then N
[~ V—hit
N
approaches 1 again in our
example.
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Hit and Miss

Hit and miss method:

» throw N random points

(x,y) into region.
» Count hits Ny,

i.e. whenever y < f(x).

Then N
I~V hit
N

approaches 1 again in our
example.
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0.6
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Example: f(x) = cos(x).

T
cos{H)
Fandom: poits
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Hit and Miss

Example: f(x) = cos(x).

1

Hit and miss method:

. ox COSERY: S
» throw N random points 0.9 SedGTE, POt 3
(x,y) into region. 08
. 0.7 I
» Count hits Ny, 06 R
i.e. whenever y < f(x). E o5
Then 0.4
I ~ VNhit 0.3 '_
N 0.2 B

approaches 1 again in our
example.

Every accepted value of x can be considered an event in this
picture. As f(x) is the "histogram’ of x, it seems obvious that the
x values are distributed as f(x) from this picture.
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0.2 :

0.1

How well does it converge?

10° 10t 102 10%

Error 1/v/N.
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0.2 :

0.1

More points, zoom in...

10° 10t 102 10%

Error 1/v/N.
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0.2 : 0.002
01 . 0.001 [

0 0
0.1 F . -0.001 |- E
0.2 L L -0.002 L L

10° 10! 102 10% 10° 109 107 108

N N
Error 1/+/N.
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Hit and Miss

This method is used in many event generators. However, it is
not sufficient as such.

» Can handle any density f(x),
however wild and unknown it is.

» f(x) should be bounded from above.
» Sampling will be very inefficient whenever Var(f) is large.

Improvements go under the name variance reduction as they
improve the error of the crude MC at the same time.
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Mean value theorem of integration:

I—/f )dx

= (x1 —x0)(f (x))

(Riemann integral).
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Mean value theorem of integration:

I—/f )dx

= (%1 —x0){f (x))
1 N
~ (11 —x0)y Y f(x:)

i=1

(Riemann integral).

Stefan Gieseke - DESY MC school 09 19/42



Mean value theorem of integration:
- / Flx)dx
= (1 —xo) (f (x ))
~ (x1 —X0) Zf X;)
(Riemann integral).

Sum doesn’t depend on ordering
— randomize x;.
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Mean value theorem of integration:

I—/f )dx

= (x1 —x0){f (x))

N

1
N Y flxi)

i=1

~ (x1—x0)

(Riemann integral).

Sum doesn’t depend on ordering
— randomize x;.

Yields a flat distribution of events x;,
but weighted with weight f(x;) (— unweighting).
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Pictorially:

f(z)

I= /xlf(x)dx
= (x1 —x0){f (%))
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Pictorially:

f(z)

I= /xlf(x)dx
= (x1 —x0){f (%))
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What’s the error?

Again, looks like

O ~

2~
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107*
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MC error

N\
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10°
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What's the error?
We can calculate it (central limit theorem for the average):

In general: Crude MC

Iz/de

N {f2) — ()
~ V() £V

(e
~ V(f):I:VW
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What's the error?
We can calculate it (central limit theorem for the average):

Our example: cos(x),0 <x <m/2,
compute ojic from

™M=
™
=

~
Il
—

>0
Il [l
2= Z|~

™=
~
N
=

~
Il
—
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What's the error?
We can calculate it (central limit theorem for the average):

Compute o directly (V = 7/2):

V{f) = /Oﬂ/zcos(x) dx=1

/2
Vi) = /0 cos?(x)dx = 7

T
— —_—— 2% . .
c ”2 1 0.4834
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What’s the error?

Now, compare

0.4834
oMe =T

with error estimate
from MC.
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What’s the error?

Now, compare

0.4834
oMe =T

with error estimate
from MC.

Spot on.

Stefan Giescke - DESY MC school 09

100

107"

10—2 -

1073 -

107*

o /VN — ]

MC error

1075
100

10!

102

103

104
N

10° 106 107 108

23/42



Another basic MC method, based on the observation that
Probability ~ Area
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» Probability density
f(x). Not necessarily
normalized.

0 50 100 150 200
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» Probability density n: 100 [ —
f(x). Not necessarily ¢ ]
normalized.

» Integral F(x) known, '

0.8 E
0.6 F E
0.4 F E
0.2 F E
0 1 1 1
0 50 100 150 200
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» Probability density n: 100 x f(r) —— 3

F(z)

f(x). Not necessarily
normalized.

» Integral F(x) known,
» P(x <xs) =F(xs) .
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» Probability density ma 100 1 E
f(x). Not necessarily

12 F E

normalized.
» Integral F(x) known, i
» P(x <xs)=F(xs) . v 3
» Probability = ‘area’, “F ;
distributed evenly, 04 F E
7 0.2 F 3
/ dP=r . ‘ ‘ ‘
0 0 50 100 150 200
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» Probability density ma 100 1 E
f(x). Not necessarily
normalized.

» Integral F(x) known,

» P(x <x5)=F(xs) .

» Probability = "area’,
distributed evenly, 04 F ;

r
/ dP=r . ‘ ‘ ‘
0 0 50 100 150 200

Sample x according to f(x) with

x=F"1 [P(xo) +r(F(x) — F(xo))] .
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Another basic MC method, based on the observation that
Probability ~ Area
Sample x according to f(x) with
x=F"1 [F(xo) +r(F(x) — P(xo))] .
Optimal method, but we need to know

» The integral F(x),
» It's inverse F~1(y).
That’s rarely the case for real problems.

But very powerful in combination with other techniques.
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Error on Crude MC oyic = 6/v/N.
= Reduce error by reducing variance of integrand.
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Error on Crude MC oyic = 6/v/N.
= Reduce error by reducing variance of integrand.

Idea: Divide out the singular structure.

1= frav— [Lav~ (L) N

where we have chosen [pdV =1 for convenience.

Note: need to sample flat in pdV, so we better know [pdV and
it’s inverse.
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Consider error term:
(8- o]
:/fng— [/fdvr .
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Consider error term:

E:/J;dV—[/de]z.

Best choice of p? Minimises E — functional variation of error
term with (normalized) p:

0=8E=35 (/%de— [/de]Z—i-)L/pdV)
=/(—p—§+a) dvep .
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Consider error term:

E:/f;de—[/fdvr

Best choice of p? Minimises E — functional variation of error
term with (normalized) p:

0=6E= /(——Jr?L)dVﬁp,

P I
Vi~ Jlflave

Choose p as close to f as possible.

hence
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Improving cos(x) 1 — T
sampling, 09 il
0.8 - 1

07 b ]

0.6 - i

& 05+ —

0.4 1

03 .

0.2 1

0.1 - 4
0 | | | | | | |
0 02 04 06 08 1 1.2 14
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Improving cos(x) 1 1 ol
sampling, 1-2u/r
0.8 |- ]
/2
= / cos(x)dx 0.6 F -
0 =
/2 cos(x =
:/ (2)(1—%x)dx 0.4 .
0 1-— 7—rx
0.2 .
/4 cos(x
= dp .
0 1— Zx 0 | | | | | | |
T lx=x(p) 0 02 04 06 08 1 1.2 14
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Improving cos(x) 1 1 ol
sampling, 1-2u/r
0.8 |- N
/2
I= / cos(x)dx 06 i
0 ©
/2 cos(x) =
= 1—2x) dx o4 i
/0 1—2x (=)
0.2 |- N
B /”/ 4 cos(x) ip
- _ 2 : ! ! ! ! ! !
0 1 X x=x(p) 00 02 04 06 1 12 14

Sample x with inverting the integral technique (flat random

number p),
x————\/—z—n'p
2 4 ’
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100 T T T
i o/VN —— |
MC error
) RN o' /VN —— |
Improving cos(x) 10-1 | MC with IS
sampling, i
much better 1072 |
convergence, I
-3
about 80% “accepted 1070 ¢
events”.
. 1074 |
Reduced variance = I
better efficiency. I
10_5 PEREENY BETEREY EESTE] SR SETETErY BETSNEr] S S
10 10 102 10® 10* 10° 105 107 108

N
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More interesting for divergent
integrands, eg

2/’
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More interesting for divergent
integrands, eg

1
2/’

with some wiggles,

p(x) =1—8x+40x> —64x> +32x* .

0 0.2 0.4 0.6 0.8 1
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More interesting for divergent

integrands, eg > ' ' Y=
f(@)
wiggles
1 4 4
2y/x
with some wiggles,

p(x) =1—8x+40x> —64x> +32x* .

i.e. we want to integrate

= . 0 0.2 04 0.6 0.8 1
2\/x
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Importance sampling — better example

» Crude MC gives 10° e E
result in reasonable S I= 4[7/63| —
‘time’. MCl e ]

» Error a bit unstable. 0 \.\ % are — 1| E

» Event generation - A _ ]

with maximum 02 b : i

weight wmax = 20. N
(that’s arbitrary.) i \

» hit/miss/events 10-3 h
with (W > Wmax) =
36566/963434 /617
with 1M generated T S R R R
events. 100 100 102 10* 10t 10° 106
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Want events:
use hit+mass variant
here:

f
37k/1IM evts

» Choose new random
number r

» w = f(x) in this case.

> if r < W/Wmax then
“hit”.

» MC efficiency =
hit/N.

0 0.2 0.4 0.6 0.8 1
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Want events:
use hit+mass variant
here:

f
37k/1IM evts

» Choose new random
number r

» w = f(x) in this case.

> if r < W/Wmax then
“hit”.

» MC efficiency =
hit/N.

» Efficiency for MC
events only 3.7%.

» Note the wiggly 0 0.2 0.4 0.6 0.8 1
histogram. &

Stefan Giescke - DESY MC school 09 31/42



Now importance sampling, i.e. divide out 1/2/x.
lﬂdx:/l(r’(x)/ 1 ) dx
0 2v/x 0 \2vx/ 2v/x) 2y/x

= [ pwava

= [ pxtonan

S0,

dx
p =V, dp—m

x sampled with inverting the integral from flat random numbers
2
p,x=p-.
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5 T T
/(@)
746k /1M evts
4 -
1 1
PO / 3 |
A 2ﬁdx— | plx(p))dp
with 2 b -
dx
p =V, dp = 2% n ]
0 Il Il Il Il
0 0.2 04 0.6 0.8 1

Events generated with wmax =1, as p(x) <1, ncf guesswork
needed here! Now, we get 74.6% MC efficiency.
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Importance sampling — better example

5 T T
f(2)
37k/1M evts
4 ]
1 1
p(x) / 5 1 |
o Cdx= d
b 22T, p(x(p))dp
with 2k -
dx
p = Vx, dp = 2% Lk .
0 | | | |
0 0.2 0.4 0.6 0.8 1

Events generated with wmax =1, as p(x) <1, n(; guesswork
needed here! Now, we get 74.6% MC efficiency.
...as opposed to 3.7%.
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Crude MC vs Importance sampling.

100 £ — 4100 J
P F |
E oo T=47/63 — E 1=47/63 —— |1
I [Ivel - [ [paveel] 1
i MC error - I
10 E \‘-. Tue =11 - |4 1071 ¢
E . E
LY
102 f : : 10-2
1078 103

. ~is
1 1 1 1 1 1 1 1 1 4l

10° 10! 102 103 10* 10° 106 10° 10t 102 103 104 10° 106

100x more events needed to reach same accuracy.
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Breit-Wigner peaks appear in many realistic MEs for cross
sections and decays.

I= / erzl"2
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Breit-Wigner peaks appear in many realistic MEs for cross
sections and decays.

I_/Sl ds _L/yl dy ( _s—mz)
sy (s=m2)24+m2T2 ml Jy, y2+1 Y= "mr

2151

1 —
= ——arct
T arctan T

S0
Inverting the integral gives (“tan mapping”).

r
fls) = (s—m21;12-|-mzf‘2 ’
2

F — t =
(s) = arctan T =P

s=F(p)=m?>+mltanp .
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0.015 : |
[ f(s)ym=10T =3 — |
L 10M evts
0.01 F ]
0.005 |- .
0
0 50 100 150 200
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Typical problem: 107 . . .

> f(s) has multiple
peaks (x wiggles
from ME).

0 50 100 150 200
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Typical problem: 107

> f(s) has multiple
peaks (x wiggles
from ME).

» Usually have some
idea of the peak
structure.

102

1073

1074
0 50 100 150 200
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Typical problem: 107

> f(s) has multiple
peaks (x wiggles
from ME).

» Usually have some 107

idea of the peak
structure.

» Encode this in sum
of sample functions 107°
gi(s) with weights
a;, Zi o = 1.

8(s) =} 0igi(s) -

1074
0 50 100 150 200
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Now rewrite

Now gi(s)ds = dp; (inverting the integral).
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Now rewrite

Now gi(s)ds = dp; (inverting the integral).

Select the distribution g;(s) you’d like to sample next event
from acc to weights ;.

o; can be optimized after a number of trials.
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Works quite well:
e e e T B o
E Multichannel error ]
F Crude MC error ]
1072 F E
1073 F
107t |
s b
102 103 104 10° 108 107
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Final Remarks/Real Life MC

» Didn’t discuss random number generators. Please make
sure to use ‘good’ random numbers (eg those that come
with CLHEP).

» Didn’t discuss stratified sampling (VEGAS). Sample where
variance is biggest.
(not necessarily where PS is most populated).

» Only discussed one—-dimensional case here. N—particle PS
has 3N — 4 dimensions. ..

» Didn’t discuss tools geared towards this, like RAMBO
(generates flat N particles PS).

» generalisation straightforward, particularly
1
MCError N
compare eg Trapezium rule Error ~ ﬁ

» Many important techniques covered here in detail! Should
be good starting point.
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Basics
» Introduction, motivation

» Monte Carlo event generators
» Monte Carlo methods

» Hit and miss
Simple MC integration

Variance reduction
Multichannel MC

vy Vv Vv
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» Lecture I — Basics:

» Introduction
» Monte Carlo techniques

» Lecture II — Perturbative physics
» Hard scattering
» Parton showers
» Lecture IIl — Non—perturbative physics
» Hadronization
» Hadronic decays
» Underlying event
» MC programs
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