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Outline

I Lecture I — Basics:
I Introduction
I Monte Carlo techniques

I Lecture II — Perturbative physics
I Hard scattering
I Parton showers

I Lecture III — Non–perturbative physics
I Hadronization
I Hadronic decays
I Underlying event
I MC programs
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Outline Lecture I

Basics
I Introduction, motivation
I Monte Carlo event generators
I Monte Carlo methods

I Hit and miss
I Simple MC integration
I Variance reduction
I Multichannel MC
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Thanks
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Why Monte Carlos?

We want to understand

Lint←→ Final states .
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Can you spot the Higgs?
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Why Monte Carlos?

LHC experiments require
sound understanding of signals and backgrounds.

↑
Full detector simulation.

↑
Fully exclusive hadronic final state.

↑
Monte Carlo event generator with

parton shower, hadronization model, decays of unstable
particles.
↑

Parton level computations.
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Experiment and Simulation
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Monte Carlo Event Generators

I Complex final states in full detail (jets).
I Arbitrary observables and cuts from final states.
I Studies of new physics models.

I Rates and topologies of final states.
I Background studies.
I Detector Design.
I Detector Performance Studies (Acceptance).

I Obvious for calculation of observables on the quantum
level

|A|2 −→ Probability.
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pp Event Generator
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Divide and conquer

Partonic cross section from Feynman diagrams

dσ = dσharddP(partons→ hadrons)

Note, that ∫
dP(partons→ hadrons) = 1 ,

I σ remains unchanged
I introduce realistic fluctuations into distributions.

Simulation steps governed by different scales
−→ separation into (Q0 ≈ 1GeV> ΛQCD)

dP(partons→ hadrons) = dP(resonance decays) [Γ>Q0]
×dP(parton shower) [TeV→Q0]
×dP(hadronisation) [∼Q0]
×dP(hadronic decays) [O(MeV)]
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Monte Carlo Methods

Introduction to the most important MC sampling
(= integration) techniques.

1. Hit and miss.
2. Simple MC integration.
3. (Some) methods of variance reduction.
4. Multichannel.
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Probability

Probability density:

dP = f (x)dx

is probability to find value x.

F(x) =
∫ x

x0

f (x)dx

is called probability distribution.

Example: f (x) = cos(x).
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Hit and Miss

Hit and miss method:
I throw N random points

(x,y) into region.
I Count hits Nhit,

i.e. whenever y< f (x).
Then

I ≈ V
Nhit

N
.

approaches 1 again in our
example.

Example: f (x) = cos(x).
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Every accepted value of x can be considered an event in this
picture. As f (x) is the ’histogram’ of x, it seems obvious that the
x values are distributed as f (x) from this picture.
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Hit and Miss
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Hit and Miss
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Hit and Miss

This method is used in many event generators. However, it is
not sufficient as such.

I Can handle any density f (x),
however wild and unknown it is.

I f (x) should be bounded from above.
I Sampling will be very inefficient whenever Var(f ) is large.

Improvements go under the name variance reduction as they
improve the error of the crude MC at the same time.
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Simple MC integration

Mean value theorem of integration:

I =
∫ x1

x0

f (x)dx

= (x1−x0)〈f (x)〉

≈ (x1−x0)
1
N

N

∑
i=1

f (xi)

(Riemann integral).

Sum doesn’t depend on ordering
−→ randomize xi.

Yields a flat distribution of events xi,
but weighted with weight f (xi) (→ unweighting).
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Simple MC integration

Pictorially:

I =
∫ x1

x0

f (x)dx

= (x1−x0)〈f (x)〉
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Simple MC integration

What’s the error?

Again, looks like

σ ∼ 1√
N
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Simple MC integration

What’s the error?

We can calculate it (central limit theorem for the average):

In general: Crude MC

I =
∫

fdV

≈ V〈f 〉±V

√
〈f 2〉−〈f 〉2

N

≈ V〈f 〉±V
σ√
N
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Simple MC integration

What’s the error?

We can calculate it (central limit theorem for the average):

Our example: cos(x),0≤ x≤ π/2,
compute σMC from

〈f 〉=
1
N

N

∑
i=1

f (xi)

〈f 2〉=
1
N

N

∑
i=1

f 2(xi).
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Simple MC integration

What’s the error?

We can calculate it (central limit theorem for the average):

Compute σ directly (V = π/2):

V〈f 〉=
∫

π/2

0
cos(x)dx = 1

V〈f 2〉=
∫

π/2

0
cos2(x)dx =

π

4

then

σ =
√

π

2
π

4
−12 ≈ 0.4834.
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Simple MC integration

What’s the error?

Now, compare

σMC =
0.4834√

N

with error estimate
from MC.

Spot on.
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Inverting the Integral

Another basic MC method, based on the observation that

Probability ∼ Area
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Inverting the Integral

I Probability density
f (x). Not necessarily
normalized.

I Integral F(x) known,
I P(x< xs) = F(xs) .
I Probability = ’area’,

distributed evenly,∫ r

0
dP = r
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1
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0 50 100 150 200

x

100× f(x)

Sample x according to f (x) with

x = F−1
[
F(x0)+ r

(
F(x1)−F(x0)

)]
.
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Inverting the Integral

Another basic MC method, based on the observation that

Probability ∼ Area

Sample x according to f (x) with

x = F−1
[
F(x0)+ r

(
F(x1)−F(x0)

)]
.

Optimal method, but we need to know

I The integral F(x),
I It’s inverse F−1(y).

That’s rarely the case for real problems.

But very powerful in combination with other techniques.
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Importance sampling

Error on Crude MC σMC = σ/
√

N.
=⇒ Reduce error by reducing variance of integrand.

Idea: Divide out the singular structure.

I =
∫

f dV =
∫ f

p
pdV ≈

〈
f
p

〉
±
√
〈f 2/p2〉−〈f/p〉2

N
.

where we have chosen
∫

pdV = 1 for convenience.

Note: need to sample flat in pdV, so we better know
∫

pdV and
it’s inverse.
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Importance sampling

Consider error term:

E =
〈

f 2

p2

〉
−
〈

f
p

〉2

=
∫ f 2

p2 pdV−
[∫ f

p
pdV

]2

=
∫ f 2

p
dV−

[∫
f dV

]2

.
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Importance sampling

Consider error term:

E =
∫ f 2

p
dV−

[∫
f dV

]2

.

Best choice of p? Minimises E → functional variation of error
term with (normalized) p:

0 = δE = δ

(∫ f 2

p
dV−

[∫
f dV

]2

+ λ

∫
pdV

)

=
∫ (
− f 2

p2 + λ

)
dVδp ,

0 = δE =
∫ (
− f 2

p2 + λ

)
dVδp ,

hence
p =

|f |√
λ

=
|f |∫
|f |dV

.

Choose p as close to f as possible.
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Importance sampling — example
Improving cos(x)
sampling,

I =
∫

π/2

0
cos(x)dx

=
∫

π/2

0

cos(x)
1− 2

π
x

(
1− 2

π
x
)

dx

=
∫

π/4

0

cos(x)
1− 2

π
x

∣∣∣∣∣
x=x(ρ)

dρ .
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f

(x
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cos(x)

Sample x with inverting the integral technique (flat random
number ρ),

x =
π

2
−
√

π2

4
−πρ .
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Importance sampling — example

Improving cos(x)
sampling,

much better
convergence,

about 80% “accepted
events”.

Reduced variance⇒
better efficiency.
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MC error
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Importance sampling — better example

More interesting for divergent
integrands, eg

1
2
√

x
,

with some wiggles,

p(x) = 1−8x+40x2−64x3 +32x4 .

i.e. we want to integrate

f (x) =
p(x)
2
√

x
.

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

x

1/2
√
x
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Importance sampling — better example

I Crude MC gives
result in reasonable
’time’.

I Error a bit unstable.
I Event generation

with maximum
weight wmax = 20.
(that’s arbitrary.)

I hit/miss/events
with (w> wmax) =
36566/963434/617
with 1M generated
events.
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Importance sampling — better example

Want events:
use hit+mass variant
here:

I Choose new random
number r

I w = f (x) in this case.
I if r< w/wmax then

“hit”.
I MC efficiency =

hit/N.

I Efficiency for MC
events only 3.7%.

I Note the wiggly
histogram.
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Importance sampling — better example

Now importance sampling, i.e. divide out 1/2
√

x.∫ 1

0

p(x)
2
√

x
dx =

∫ 1

0

(
p(x)
2
√

x

/
1

2
√

x

)
dx

2
√

x

=
∫ 1

0
p(x)d

√
x

=
∫ 1

0
p(x(ρ))dρ

so,

ρ =
√

x, dρ =
dx

2
√

x

x sampled with inverting the integral from flat random numbers
ρ , x = ρ2.
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Importance sampling — better example

∫ 1

0

p(x)
2
√

x
dx =

∫ 1

0
p(x(ρ))dρ

with

ρ =
√

x, dρ =
dx
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Events generated with wmax = 1, as p(x)≤ 1, no guesswork
needed here! Now, we get 74.6% MC efficiency.

. . . as opposed to 3.7%.
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Importance sampling — better example

Crude MC vs Importance sampling.
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100×more events needed to reach same accuracy.
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Importance sampling — another useful example

Breit–Wigner peaks appear in many realistic MEs for cross
sections and decays.

I =
∫ s1

s0

ds
(s−m2)2 + m2Γ2

=
1

mΓ

∫ y1

y0

dy
y2 + 1

(y =
s−m2

mΓ
)

=
1

mΓ
arctan

s−m2

mΓ

∣∣∣∣s1

s0

Inverting the integral gives (“tan mapping”).

f (s) =
mΓ

(s−m2)2 + m2Γ2 ,

F(s) = arctan
s−m2

mΓ
= ρ ,

s = F−1(ρ) = m2 + mΓ tanρ .
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Importance sampling — another useful example
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Multichannel MC

Typical problem:
I f (s) has multiple

peaks (×wiggles
from ME).

I Usually have some
idea of the peak
structure.

I Encode this in sum
of sample functions
gi(s) with weights
αi,∑i αi = 1.

g(s) = ∑
i

αigi(s) .
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Multichannel MC

Now rewrite ∫ s1

s0

f (s)ds =
∫ s1

s0

f (s)
g(s)

g(s)ds

=
∫ s1

s0

f (s)
g(s) ∑

i
αigi(s)ds

= ∑
i

αi

∫ s1

s0

f (s)
g(s)

gi(s)ds

Now gi(s)ds = dρi (inverting the integral).

Select the distribution gi(s) you’d like to sample next event
from acc to weights αi.

αi can be optimized after a number of trials.
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Multichannel MC

Works quite well:
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Final Remarks/Real Life MC

I Didn’t discuss random number generators. Please make
sure to use ‘good’ random numbers (eg those that come
with CLHEP).

I Didn’t discuss stratified sampling (VEGAS). Sample where
variance is biggest.
(not necessarily where PS is most populated).

I Only discussed one–dimensional case here. N–particle PS
has 3N−4 dimensions. . .

I Didn’t discuss tools geared towards this, like RAMBO
(generates flat N particles PS).

I generalisation straightforward, particularly
MCError∼ 1√

N
,

compare eg Trapezium rule Error∼ 1
N2/D .

I Many important techniques covered here in detail! Should
be good starting point.
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Outline Lecture I

Basics
I Introduction, motivation
I Monte Carlo event generators
I Monte Carlo methods

I Hit and miss
I Simple MC integration
I Variance reduction
I Multichannel MC
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Outline

I Lecture I — Basics:
I Introduction
I Monte Carlo techniques

I Lecture II — Perturbative physics
I Hard scattering
I Parton showers

I Lecture III — Non–perturbative physics
I Hadronization
I Hadronic decays
I Underlying event
I MC programs
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