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» Lecture I — Basics:

» Introduction
» Monte Carlo techniques

» Lecture II — Perturbative physics
» Hard scattering
» Parton showers
» Lecture IIl — Non—perturbative physics
» Hadronization
» Hadronic decays
» Underlying event
» MC programs
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» Hard scattering

» Matrix elements and phase space
» Mini event generator
» Parton showers
ete” annihilation and collinear limits
Multiple emissions
Sudakov form factor
Parton cascades
Coherence/angular ordering
Misc aspects
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» Perturbation theory/Feynman diagrams give us (fairly
accurate) final states for a few number of legs (O(1)).

» OK for very inclusive observables.
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» Perturbation theory/Feynman diagrams give us (fairly
accurate) final states for a few number of legs (O(1)).

» OK for very inclusive observables.
» Starting point for further simulation.
» Want exclusive final state at the LHC (O(100)).
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Matrix elements

v

Perturbation theory/Feynman diagrams give us (fairly
accurate) final states for a few number of legs (O(1)).

v

OK for very inclusive observables.

v

Starting point for further simulation.
Want exclusive final state at the LHC (O(100)).
Want arbitrary cuts.

v

v

» — use Monte Carlo methods.
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From Matrix element, we calculate
o= / lf|M|2 do d®, = (21)* )]n] 7
~JF " " (2m)32E;

i=
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From Matrix element, we calculate
c= / lf|M|2 O(cuts)dP d®, = (2n)* o) In] dp
~JF " " (2m)32E;

i=
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From Matrix element, we calculate

_ (152 _ 45(4) N
o= / Y IMPO(cuts)d®,,  d, = (27)*5 I i,
rearrange,

1 3n—4

—d®, =) ] dx

F i=1
such that

RS, @) =)@ LIMPO(cuts)

O =

2l
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From Matrix element, we calculate

_ (1502 ) S G
o= / Y IMPO(cuts)dD,,  dd, = (2m)*8 )., M garar,
rearrange,

1 3n—4

—d®, =) ] dx

F i=1
such that

fFEREE, FE) =]@ Y MPO(cuts)
N 1 N
; Xi N izzlwl' .

We generate events X; with weights w;.

\

Rl

= I
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» We generate pairs (X;,w;).
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» We generate pairs (X;,w;).
» Use immediately to book weighted histogram of arbitrary
observable (possibly with additional cuts!)
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» We generate pairs (X;,w;).

» Use immediately to book weighted histogram of arbitrary
observable (possibly with additional cuts!)

» Keep event X; with probability

w.
p=—

wmax

Generate events with same frequency as in nature!
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Mini event generator

» We generate pairs (X;,w;).

» Use immediately to book weighted histogram of arbitrary
observable (possibly with additional cuts!)

» Keep event X; with probability

w;

P, =

)
wmax

where wpax has to be chosen sensibly.
— reweighting, when max(w;) = @Wmax > Wmax, as

Pi: w; _ w;j 'wmax

— — )
Wmax Wmax Wmax

i.e. reject events with probability (Wmax/Wmax) afterwards.

(can be ignored when #(events with w; > @Wmax) small.)
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» We generate pairs (X;,w;).

» Use immediately to book weighted histogram of arbitrary
observable (possibly with additional cuts!)

» Keep event X; with probability

w.
p=—

wmax

Generate events with same frequency as in nature!
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Some comments:

» Use techniques from lecture 1 to generate events efficiently.
Goal: small variance in w; distribution!
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Some comments:

» Use techniques from lecture 1 to generate events efficiently.
Goal: small variance in w; distribution!
» Clear from lecture 1: efficient generation closely tied to

knowledge of f(¥;), i.e. the matrix element’s propagator
structure.

— build phase space generator already while generating
ME’s automatically.
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Matrix elements

Some comments:

» Use techniques from lecture 1 to generate events efficiently.
Goal: small variance in w; distribution!

» Clear from lecture 1: efficient generation closely tied to
knowledge of f(%;), i.e. the matrix element’s propagator
structure.

— build phase space generator already while generating
ME'’s automatically.

» more on automatic ME generation in T. Ohl’s lecture.
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Quarks and gluons in final state, pointlike.
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Quarks and gluons in final state, pointlike.

» Know short distance (short time) fluctuations from matrix
element/Feynman diagrams: O ~ few GeV to O(TeV).

» Measure hadronic final states, long distance effects,
QO ~1GeV.
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Parton showers

Quarks and gluons in final state, pointlike.

» Know short distance (short time) fluctuations from matrix
element/Feynman diagrams: O ~ few GeV to O(TeV).

» Parton shower evolution, multiple gluon emissions
become resolvable at smaller scales. TeV — 1 GeV.

» Measure hadronic final states, long distance effects,
Qo ~ 1GeV.

Stefan Gieseke - DESY MC school 09 10/35



Parton showers

Quarks and gluons in final state, pointlike.

» Know short distance (short time) fluctuations from matrix
element/Feynman diagrams: O ~ few GeV to O(TeV).

» Parton shower evolution, multiple gluon emissions
become resolvable at smaller scales. TeV — 1 GeV.

» Measure hadronic final states, long distance effects,
Qo ~ 1GeV.

Dominated by large logs, terms

ZHQN
Do 1.

Generated from emissions ordered in Q.

og log
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Parton showers

Quarks and gluons in final state, pointlike.

» Know short distance (short time) fluctuations from matrix
element/Feynman diagrams: O ~ few GeV to O(TeV).

» Parton shower evolution, multiple gluon emissions
become resolvable at smaller scales. TeV — 1 GeV.

» Measure hadronic final states, long distance effects,
Qo ~ 1GeV.

Dominated by large logs, terms

ZHQN
Do 1.

Generated from emissions ordered in Q.
Soft and/or collinear emissions.

og log
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eTe~ annihilation

Good starting point: ee™ — ggg:
Final state momenta in one (x1,x2) = (x4,%5) —plane:
plane (orientation usually

averaged).
Write momenta in terms of

= (i=129),

X; = Q2
0<x;<1,x1+x2+x3=2,
q=(Q.0,0,0), i
Q=E. .

Fig: momentum configuration of 4,7 and : for
given point (x1,x7), § direction fixed.
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Differential cross section:

do _O_Cpas X1+X2
dyide,  ° 27 (I1—x1)(1—x2)

Collinear singularities: x; — 1 or x, — 1.
Soft singularity: xq,x, — 1.
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eTe~ annihilation

Differential cross section:

do . Crog X1+ X2
dyide,  ° 27 (I1—x1)(1—x2)

Collinear singularities: x; — 1 or x, — 1.
Soft singularity: x1,x, — 1.

Rewrite in terms of x3 and 6 = Z(q,9):

do B Crag 2 1—}—(1—)63)2
dcos@dx; 0 27 |sin?@ X3

Singular as 8 — 0 and x3 — 0.
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Can separate into two jets as

2dcos®  dcos@ dcos6
sinf 1—cos® 14cos6
dcos6 dcos6
1—cos® 1—cos6
de? de?
o7 T g7
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Can separate into two jets as

2dcos®  dcos@ dcos6
sin29  1—cosO * 1+cos6
dcos6 dcos6
1—cos® 1—cos6
de? dé6?
o7 T g7

So, we rewrite do in collinear limit as
de? OCS 1+ (1 — 2)2
do = Op Z 02 2 Z—de

jets
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Can separate into two jets as

2dcos®  dcos@ dcos6

sin® @ _1—C059+1+c056

_ dcos@ dcos6

" 1—cos® 1—cos6
de? dé?
o7 T g7

So, we rewrite do in collinear limit as

d? s 14 (12
do = oy Cr————>dz
E;S 62 21 z2

de 065
=00} g7 2,

jets

with DGLAP splitting function P(z).
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Universal DGLAP splitting kernels for collinear limit:

de? Os
do=o0p) —5 —P(z)dz
0 ]e;s 02 21
1+2?
Prg(2) = Cry —Zz Pgge(2) = CA(l_z-,(Zl(;—_z)Z))2
N2
Py sgol2) = Gt (12 2) Pygal2) = Tr(1 —22(1 - 2))
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Universal DGLAP splitting kernels for collinear limit:

de? Ols
do = O'()jezts ?ZL’P(Z)dZ

Note: Other variables may equally well characterize the
collinear limit:

de? dQ> dpi dg* dt

whenever Qz,pi,t — 0 means “collinear”.
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Collinear limit
Universal DGLAP splitting kernels for collinear limit:

d9 Ols
do=0cp) — o7 27r

jets

Note: Other variables may equally well characterize the
collinear limit:

de? dQ* dpt dP dt
02 QZ pi (72 t

whenever Qz,pi,t — 0 means “collinear”.
» O: HERWIG
» Q% PYTHIA < 6.3, SHERPA.
> p,: PYTHIA > 6.4, ARIADNE, CS-SHERPA.
Sk Herwig++.
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Need to introduce resultion fy, e.g. a cutoff in p, . Prevent us
from the singularity at 6 — 0.

Emissions below f; are unresolvable.

Finite result due to virtual corrections:

—086oOTC00  + (@% = finite.

unresolvable + virtual emissions are included in Sudakov form
factor via unitarity (see below!).
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Starting point: factorisation in collinear limit, single emission.

fAE g :
641 (t) = oa(to) /t o / dz 22 P(z) = o(to) [ dEW(t).

0 to
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Towards multiple emissions

Starting point: factorisation in collinear limit, single emission.

tdr o t
641 (t) = oa(to) /t o /Z dz 22 P(z) = o(to) [ dEW(t).

0 to

Simple example:
Multiple photon emissions, strongly ordered in ¢.

We want
Woum = Z’ Wain = Aé chpﬁ/%zq}jL/'%
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for any number of emissions.
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: ézd“’l) /K‘:lz awin.
KT P o) ]

t t 2
=2 [t [ @ W(e)w(r') = 2 < dEW (¢ ))
to to 2.'

We used
t t 1 t n
dty ... dt, W(t1)...W(ty) = — ( dtW(t)> )
to fo n! \ Ut
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Easily generalized to n emissions o’% by induction. i.e.

2 (ot "
W2+n = m ( dt W(t))

to
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Easily generalized to n emissions o’% by induction. i.e.

2 (ot "
W2+n = m ( dt W(t))

to

So, in total we get

oo t k ,
02(to) = 0a(to) Y i—:c ( dt W(t)) = o(to) (e2ft0 dtw(t) 1)

k=1"" \Jto
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Easily generalized to n emissions o’% by induction. i.e.

2 (ot "
W2+n = m ( dt W(t))

fo

So, in total we get

oo t k ,
02(to) = 0a(to) Y i—:c ( dt W(t)) = o(to) (eZItO dtw(t) 1)

k=1 \Jto

= oy (to) (ﬁ a 1)

Sudakov Form Factor
t
A(tg,t) =exp [— dt W(t)}
to
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Easily generalized to n emissions o’% by induction. i.e.

2 (ot "
W2+n = m ( dt W(t))

fo

So, in total we get

oo t k .
0-2(to) = 02(to) Z i—:c ( dt W(t)) = o(to) (eZItO dEw() 1)

k=1 \Jto

1
=) (e, 1)
Sudakov Form Factor in QCD

A(t,t) = exp [— t:dtW(t)] — exp [_ /t:% / asz(;’t)ﬁ(z,t)dz]
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Sudakov form factor

Note that

1
) ‘1> ’

Ga11202+0>2262+62<

= A%(fo,t) = — .
(to.1) Oall

Two jet rate = A* = P?(No emission in the range t — to) .

Sudakov form factor = No emission probability .
Often A(fg,t) = A(t).
» Hard scale t, typically CM energy or p, of hard process.

» Resolution t(, two partons are resolved as two entities if
inv mass or relative p, above t.

» P2 (not P), as we have two legs that evolve independently.
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Unitarity

P(“some emission”) 4+ P(“no emission”)
=P0<t<T)+P(0<t<T)=1.

Multiplication law (no memory)

PO<t<T)=P0<t<t)Ph<t<T)

Stefan Giescke - DESY MC school 09 20/35



Unitarity
P(“some emission”) 4+ P(“no emission”)
=P0<t<T)+P0O0<t<T)=1.
Multiplication law (no memory)
PO<t<T)=P0<t<t)Ph<t<T)
Then subdivide into # pieces: t; = %T, 0<i<n.

n—1 n—1

PO<t<T)=lm [[P(ti<t<tiq)= lim (1-P(t; <t <tis1))
—00 ,=0

Nn—oo
=0 [}

n—1 T
= exp (—%1_1)1;10 P(t;<t< ti+1)> =exp (— A dl;—it)dt) )
=0

1
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Again, no—emission probability!

T
PO<t<T)=exp (— dl;—i”dt)
0

So,
dP(first emission at T) = dP(T)P(0 < t < T)

T
=dP(T)exp <— : dl;—gt)dt)

That’s what we need for our parton shower! Probability
density for next emission at t:

dP(next emission at t) =

dt [# os(z,t) « /fdt/Z+ 05(z,t) A
- P(z,t)dz exp[ t L P(z,t)dz

Stefan Giescke - DESY MC school 09 21/35




Probability density:

dP(next emission at t) =
Zy t Z4
g MP(Z t)dz exp [ / dt/ OCS “ t P(z t)dz]

t Jo 2n

Conveniently, the probability distribution is A(t) itself.
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Parton shower Monte Carlo

Probability density:

dP(next emission at t) =
i t .
dt Ots(Z t) (Z t)dZ exp |: / dt/ OCS zZ t) (Z t)dZ

N 2n

Conveniently, the probability distribution is A(t) itself.
Hence, parton shower very roughly from (HERWIG):

1. Choose flat random number 0 < p < 1.
2. If p < A(tmax): no resolbable emission, stop this branch.

3. Else solve p = A(fmax)/A(f)
(= no emission between .y and £) for t.
Reset tmax = t and goto 1.

Determine z essentially according to integrand in front of exp.
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Parton shower Monte Carlo

Probability density:

dP(next emission at t) =
i t .
dt Ots(Z t) (Z t)dZ exp |: / dt/ OCS zZ t) (Z t)dZ

N 2n

Conveniently, the probability distribution is A(t) itself.
» That was old HERWIG variant. Relies on (numerical)
integration/tabulation for A(t).

» Pythia, now also Herwig++, use the Veto Algorithm.
» Method to sample x from distribution of the type

dP = F(x)exp [— /xdx'F(x’)] dx .

Simpler, more flexible, but slightly slower.
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Parton cascade

Get tree structure, ordered in evolution variable ¢:

Here: t| >ty > t3; tp > ty etc.
Construct four momenta from (t;,z;) and (random) azimuth ¢.

Stefan Gieseke - DESY MC school 09 23/35



Parton cascade

Get tree structure, ordered in evolution variable ¢:

Here: t; > t, > t3; tp > ty etc.
Construct four momenta from (t;,z;) and (random) azimuth ¢.

Not at all unique!
Many (more or less clever) choices still to be made.
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Parton cascade

Get tree structure, ordered in evolution variable ¢:

v

tcanbe 6, Q% py, ...
Choice of hard scale tnax not fixed. “Some hard scale”.

v

v

z can be light cone momentum fraction, energy fraction, ...

v

Available parton shower phase space.

v

Integration limits.
» Regularisation of soft singularities.
> ...

Good choices needed here to describe wealth of data!

Stefan Gieseke - DESY MC school 09 24/35



» Only collinear emissions so far.
» Including collinear+soft.
» Large angle+soft also important.
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Soft emissions

» Only collinear emissions so far.
» Including collinear+soft.
» Large angle+soft also important.

Soft emission: consider eikonal factors,
here for q(p+q) — 9(p)g(q), soft g:

u(p) g AT e

(p+q)* —m? Mo
soft factorisation. Universal, i.e. independent of emitter.
In general:
dw dQ o, . .
do,1 =do,— T 2; ZCZJWZ] ("QCD-Antenna”)
with

1—cos 0ij
(1—cos6;)(1—cosby)

Wi]' =

Stefan Gieseke - DESY MC school 0 25/35



We define

1—cos 6;
(1—cos ;) (1 —cos 6;)

W = =w+w)

with
1

O_llw, 1 1
Wi T2 (Wl +1—coseiq 1—coseqj> ’

Wi(ji) is only collinear divergent if g||i etc .
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We define

1—cos 6;;
(1—cosB;)(1—cosby)

W,‘j = W + WU)

with

O_ Ly, 1 1
Wi T2 (W”_'_l—coseiq 1—cosOq]~> ’

Wi(ji) is only collinear divergent if g||i etc .
After integrating out the azimuthal angles, we find

1

d‘qu 1—cos 0ig
27r

(65 < 6;)
0 otherwise

That’s angular ordering.
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Angular ordering

Radiation from parton i is Results in angular ordered
bound to a cone, given by the parton shower and suppresses
colour partner parton j. soft gluons viz. hadrons in a jet.
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Events with 2 hard (> 100 GeV) jets and a soft 3rd jet (~ 10 GeV)

(O]

« DATA

* DATA
— ISAUET

Fraction of events

FIG. 14. Observed R distribution compared to the predic-

Fraction of events

(@) (®)
— HERWIG. — ISAJET
0.061~ & paTA * DATA
l; +
0.04 + Sty 4 '
't
)
0021 ¢ . K o
. .
..
° L I L L I L
© @
_ PYTHIA _ PYTHIA+
0061 ¢ para « DATA
N +
o004 A +
»‘o.”,o ¥, i 4
.
.
002f ¢ - K .
D . . .
0 L L T L L
-4 -2 o 2z -2 o 2 .
s s

FIG. 13. Observed 7ns distribution compared to the predic-

tions of (a) HERWIG; (b) ISAJET; (c) PYTHIA; (d) PYTHIA+. tions of (a) HERWIG; (b) ISAJET; (c) PYTHIA; (d) PYTHIA+.

Best description with angular ordering.
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VS.

Similar to final state radiation. Sudakov form factor (x’ = x/z)

tmax Z / / A
A(t, tmax) = exp l_z /t # / " 4, %@ (1) Pz, 1)
b zZ_

2 xfu(x,t)

Have to divide out the pdfs.
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Evolve backwards from hard scale Q% down towards cutoff
scale Q3. Thereby increase x.

QQA

N
4 b

With parton shower we undo the DGLAP evolution of the pdfs.

Y
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After shower: original partons acquire
virtualities 47

— boost/rescale jets:

Started with

n
Vi Y iR
i=1
we rescale momenta with common factor k,
L 2 2
V=Y \ q; +kp;
i=1

to preserve overall energy /momentum.
— resulting jets are boosted accordingly.
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Exact kinematics when recoil is taken
by spectator(s).

» Dipole showers.

» Ariadne.

» Recoils in Pythia.
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Exact kinematics when recoil is taken
by spectator(s).

» Dipole showers.

» Ariadne.

» Recoils in Pythia.

» New dipole showers, based on

» Catani Seymour dipoles.
» QCD Antennae.
» Goal: matching with NLO.

» Generalized to IS-IS, IS-FS.
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No details on

» ME corrections:
» hard.
» soft.

» Matching with LO ME:
» MLM.
» CKKW.

» Matching with NLO:

» MC@NLO.
» POWHEG.

» Catani-Seymour dipoles/Antennae.
-

Most active research in the field.
Little BSM (“dominated by hard stuff”). Mostly backgrounds.
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» Hard scattering

» Matrix elements and phase space
» Mini event generator
» Parton showers
ete” annihilation and collinear limits
Multiple emissions
Sudakov form factor
Parton cascades
Coherence/angular ordering
Misc aspects

Yy Y vV VY VY
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» Hard scattering
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