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Outline

I Lecture I — Basics:
I Introduction
I Monte Carlo techniques

I Lecture II — Perturbative physics
I Hard scattering
I Parton showers

I Lecture III — Non–perturbative physics
I Hadronization
I Hadronic decays
I Underlying event
I MC programs
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Outline Lecture II

I Hard scattering
I Matrix elements and phase space
I Mini event generator

I Parton showers
I e+e− annihilation and collinear limits
I Multiple emissions
I Sudakov form factor
I Parton cascades
I Coherence/angular ordering
I Misc aspects
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Hard scattering
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Hard scattering
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Matrix elements

I Perturbation theory/Feynman diagrams give us (fairly
accurate) final states for a few number of legs (O(1)).

I OK for very inclusive observables.

I Starting point for further simulation.
I Want exclusive final state at the LHC (O(100)).
I Want arbitrary cuts.
I → use Monte Carlo methods.
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Cross section formula

From Matrix element, we calculate

σ =
∫ 1

F∑|M|2

Θ(cuts)

dΦn , dΦn =(2π)4
δ

(4)(. . .)
n

∏
i=1

d3~p
(2π)32Ei

rearrange,
1
F

dΦn = J(~x)
3n−4

∏
i=1

dxi

such that

σ =
∫

f (~x)d3n−4~x , f (~x) = J(~x)∑|M|2Θ(cuts)

=
1
N

N

∑
i=1

f (~xi)
p(~xi)

=
1
N

N

∑
i=1

wi .

We generate events~xi with weights wi.
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Mini event generator

I We generate pairs (~xi,wi).

I Use immediately to book weighted histogram of arbitrary
observable (possibly with additional cuts!)

I Keep event~xi with probability

Pi =
wi

wmax
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Mini event generator

I We generate pairs (~xi,wi).
I Use immediately to book weighted histogram of arbitrary

observable (possibly with additional cuts!)
I Keep event~xi with probability

Pi =
wi

wmax
,

where wmax has to be chosen sensibly.
→ reweighting, when max(wi) = w̄max > wmax, as

Pi =
wi

w̄max
=

wi

wmax
· wmax

w̄max
,

i.e. reject events with probability (wmax/w̄max) afterwards.
(can be ignored when #(events with wi > w̄max) small.)
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Matrix elements

Some comments:
I Use techniques from lecture 1 to generate events efficiently.

Goal: small variance in wi distribution!

I Clear from lecture 1: efficient generation closely tied to
knowledge of f (~xi), i.e. the matrix element’s propagator
structure.
→ build phase space generator already while generating
ME’s automatically.

I more on automatic ME generation in T. Ohl’s lecture.
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Hard matrix element
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Hard matrix element→ parton showers
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Parton showers

Quarks and gluons in final state, pointlike.

I Know short distance (short time) fluctuations from matrix
element/Feynman diagrams: Q∼ few GeV to O(TeV).

I Parton shower evolution, multiple gluon emissions
become resolvable at smaller scales. TeV→ 1 GeV.

I Measure hadronic final states, long distance effects,
Q0 ∼ 1GeV.

Dominated by large logs, terms

α
n
S log2n Q

Q0
∼ 1 .

Generated from emissions ordered in Q.
Soft and/or collinear emissions.
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e+e− annihilation

Good starting point: e+e−→ qq̄g:

Final state momenta in one
plane (orientation usually
averaged).
Write momenta in terms of

xi =
2pi ·q

Q2 (i = 1,2,3) ,

0≤ xi ≤ 1 ,x1 +x2 +x3 = 2 ,

q = (Q,0,0,0) ,

Q≡ Ecm .

(x1,x2) = (xq,xq̄) –plane:

Fig: momentum configuration of q, q̄ and g for
given point (x1,x2), q̄ direction fixed.
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e+e− annihilation

Differential cross section:

dσ

dx1dx2
= σ0

CFαS

2π

x1 +x2

(1−x1)(1−x2)

Collinear singularities: x1→ 1 or x2→ 1.
Soft singularity: x1,x2→ 1.

Rewrite in terms of x3 and θ = ∠(q,g):

dσ

dcosθdx3
= σ0

CFαS

2π

[
2

sin2
θ

1+(1−x3)2

x3
−x3

]
Singular as θ → 0 and x3→ 0.
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e+e− annihilation

Can separate into two jets as

2dcosθ

sin2
θ

=
dcosθ

1− cosθ
+

dcosθ

1+ cosθ

=
dcosθ

1− cosθ
+

dcos θ̄

1− cos θ̄

≈ dθ 2

θ 2 +
dθ̄ 2

θ̄ 2

So, we rewrite dσ in collinear limit as

dσ = σ0 ∑
jets

dθ 2

θ 2
αS

2π
CF

1+(1− z)2

z2 dz

= σ0 ∑
jets

dθ 2

θ 2
αS

2π
P(z)dz

with DGLAP splitting function P(z).
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Collinear limit

Universal DGLAP splitting kernels for collinear limit:

dσ = σ0 ∑
jets

dθ 2

θ 2
αS

2π
P(z)dz

Pq→qg(z) = CF
1+ z2

1− z

Pq→gq(z) = CF
1+(1− z)2

z

Pg→gg(z) = CA
(1− z(1− z))2

z(1− z)

Pg→qq(z) = TR(1−2z(1− z))
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Collinear limit

Universal DGLAP splitting kernels for collinear limit:

dσ = σ0 ∑
jets

dθ 2

θ 2
αS

2π
P(z)dz

Note: Other variables may equally well characterize the
collinear limit:

dθ 2

θ 2 ∼
dQ2

Q2 ∼
dp2
⊥

p2
⊥
∼ dq̃2

q̃2 ∼
dt
t

whenever Q2,p2
⊥, t→ 0 means “collinear”.

I θ : HERWIG

I Q2: PYTHIA ≤ 6.3, SHERPA.
I p⊥: PYTHIA ≥ 6.4, ARIADNE, CS–SHERPA.
I q̃: Herwig++.
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Resolution

Need to introduce resultion t0, e.g. a cutoff in p⊥. Prevent us
from the singularity at θ → 0.

Emissions below t0 are unresolvable.

Finite result due to virtual corrections:

+ = finite.

unresolvable + virtual emissions are included in Sudakov form
factor via unitarity (see below!).
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Towards multiple emissions

Starting point: factorisation in collinear limit, single emission.

σ2+1(t0) = σ2(t0)
∫ t

t0

dt′

t′

∫ z+

z−
dz

αS

2π
P̂(z) = σ2(t0)

∫ t

t0

dtW(t) .

Simple example:
Multiple photon emissions, strongly ordered in t.
We want

Wsum = ∑
n=1

W2+n =

∫ ∣∣∣∣ ∣∣∣∣2 dΦ1 +
∫ ∣∣∣∣ ∣∣∣∣2 dΦ2 +

∫ ∣∣∣∣ ∣∣∣∣2 dΦ3 + · · ·∣∣∣∣∣
∣∣∣∣∣
2

for any number of emissions.
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Towards multiple emissions

(n = 1)

W2+1 =

∫ ∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣
2

dΦ1

/∣∣∣∣∣
∣∣∣∣∣
2

=
2
1!

∫ t

t0

dtW(t) .

(n = 2)

W2+2 =

(∫ ∣∣∣∣ ∣∣∣∣2 +
∣∣∣∣ ∣∣∣∣2 +

∣∣∣∣ ∣∣∣∣2 +
∣∣∣∣ ∣∣∣∣2 dΦ2

)/∣∣∣∣∣
∣∣∣∣∣
2

= 22
∫ t

t0

dt′
∫ t′

t0

dt′′W(t′)W(t′′) =
22

2!

(∫ t

t0

dtW(t)
)2

.

We used∫ t

t0

dt1 . . .
∫ tn

t0

dtn W(t1) . . .W(tn) =
1
n!

(∫ t

t0

dtW(t)
)n

.
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Towards multiple emissions

Easily generalized to n emissions by induction. i.e.

W2+n =
2n

n!

(∫ t

t0

dtW(t)
)n

So, in total we get

σ>2(t0) = σ2(t0)
∞

∑
k=1

2k

k!

(∫ t

t0

dtW(t)
)k

= σ2(t0)
(

e2
∫ t

t0
dtW(t)−1

)
= σ2(t0)

(
1

∆2(t0, t)
−1
)

Sudakov Form Factor

in QCD

∆(t0, t)= exp
[
−
∫ t

t0

dtW(t)
]

= exp
[
−
∫ t

t0

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz
]
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Sudakov form factor

Note that

σall = σ2 +σ>2 = σ2 +σ2

(
1

∆2(t0, t)
−1
)

,

⇒ ∆
2(t0, t) =

σ2

σall
.

Two jet rate = ∆
2 = P2(No emission in the range t→ t0) .

Sudakov form factor = No emission probability .

Often ∆(t0, t)≡ ∆(t).
I Hard scale t, typically CM energy or p⊥ of hard process.
I Resolution t0, two partons are resolved as two entities if

inv mass or relative p⊥ above t0.
I P2 (not P), as we have two legs that evolve independently.
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Sudakov form factor from Markov property

Unitarity

P(“some emission”)+P(“no emission”)

= P(0 < t≤ T)+ P̄(0 < t≤ T) = 1 .

Multiplication law (no memory)

P̄(0 < t≤ T) = P̄(0 < t≤ t1)P̄(t1 < t≤ T)

Then subdivide into n pieces: ti = i
n T,0≤ i≤ n.

P̄(0 < t≤ T) = lim
n→∞

n−1

∏
i=0

P̄(ti < t≤ ti+1) = lim
n→∞

n−1

∏
i=0

(
1−P(ti < t≤ ti+1)

)
= exp

(
− lim

n→∞

n−1

∑
i=0

P(ti < t≤ ti+1)

)
= exp

(
−
∫ T

0

dP(t)
dt

dt
)

.
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Sudakov form factor

Again, no–emission probability!

P̄(0 < t≤ T) = exp
(
−
∫ T

0

dP(t)
dt

dt
)

So,

dP(first emission at T) = dP(T)P̄(0 < t≤ T)

= dP(T)exp
(
−
∫ T

0

dP(t)
dt

dt
)

That’s what we need for our parton shower! Probability
density for next emission at t:

dP(next emission at t) =
dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz exp
[
−
∫ t

t0

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz
]
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Parton shower Monte Carlo

Probability density:

dP(next emission at t) =
dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz exp
[
−
∫ t

t0

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz
]

Conveniently, the probability distribution is ∆(t) itself.
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Parton shower Monte Carlo

Probability density:

dP(next emission at t) =
dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz exp
[
−
∫ t

t0

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz
]

Conveniently, the probability distribution is ∆(t) itself.
Hence, parton shower very roughly from (HERWIG):

1. Choose flat random number 0≤ ρ ≤ 1.
2. If ρ < ∆(tmax): no resolbable emission, stop this branch.
3. Else solve ρ = ∆(tmax)/∆(t)

(= no emission between tmax and t) for t.
Reset tmax = t and goto 1.

Determine z essentially according to integrand in front of exp.
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Parton shower Monte Carlo

Probability density:

dP(next emission at t) =
dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz exp
[
−
∫ t

t0

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz
]

Conveniently, the probability distribution is ∆(t) itself.
I That was old HERWIG variant. Relies on (numerical)

integration/tabulation for ∆(t).
I Pythia, now also Herwig++, use the Veto Algorithm.
I Method to sample x from distribution of the type

dP = F(x)exp
[
−
∫ x

dx′F(x′)
]

dx .

Simpler, more flexible, but slightly slower.
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Parton cascade

Get tree structure, ordered in evolution variable t:

Here: t1 > t2 > t3; t2 > t3′ etc.
Construct four momenta from (ti,zi) and (random) azimuth φ .

Not at all unique!
Many (more or less clever) choices still to be made.
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Parton cascade

Get tree structure, ordered in evolution variable t:

I t can be θ , Q2, p⊥, . . .
I Choice of hard scale tmax not fixed. “Some hard scale”.
I z can be light cone momentum fraction, energy fraction, . . .
I Available parton shower phase space.
I Integration limits.
I Regularisation of soft singularities.
I . . .

Good choices needed here to describe wealth of data!
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Soft emissions

I Only collinear emissions so far.
I Including collinear+soft.
I Large angle+soft also important.

Soft emission: consider eikonal factors,
here for q(p+q)→ q(p)g(q), soft g:

u(p) 6 ε 6 p+ 6 q+m
(p+q)2−m2 −→ u(p)

p · ε
p ·q

soft factorisation. Universal, i.e. independent of emitter.
In general:

dσn+1 = dσn
dω

ω

dΩ

2π

αS

2π
∑
ij

CijWij (”QCD–Antenna”)

with

Wij =
1− cosθij

(1− cosθiq)(1− cosθqj)
.
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Soft emissions

We define

Wij =
1− cosθij

(1− cosθiq)(1− cosθqj)
≡W(i)

ij +W(j)
ij

with

W(i)
ij =

1
2

(
Wij +

1
1− cosθiq

− 1
1− cosθqj

)
.

W(i)
ij is only collinear divergent if q‖i etc .

After integrating out the azimuthal angles, we find

∫ dφiq

2π
W(i)

ij =


1

1− cosθiq
(θiq < θij)

0 otherwise

That’s angular ordering.
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Angular ordering

Radiation from parton i is
bound to a cone, given by the
colour partner parton j.

i

j

Results in angular ordered
parton shower and suppresses
soft gluons viz. hadrons in a jet.
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Colour coherence from CDF

Events with 2 hard (> 100 GeV) jets and a soft 3rd jet (∼ 10 GeV)

F. Abe et al. [CDF Collaboration], Phys. Rev. D 50 (1994) 5562.

Best description with angular ordering.
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Initial state radiation

Similar to final state radiation. Sudakov form factor (x′ = x/z)

∆(t, tmax) = exp

[
−∑

b

∫ tmax

t

dt
t

∫ z+

z−
dz

αS(z, t)
2π

x′fb(x′, t)
xfa(x, t)

P̂ba(z, t)

]

Have to divide out the pdfs.
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Initial state radiation

Evolve backwards from hard scale Q2 down towards cutoff
scale Q2

0. Thereby increase x.

With parton shower we undo the DGLAP evolution of the pdfs.
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Reconstruction of Kinematics

After shower: original partons acquire
virtualities q2

i
→ boost/rescale jets:
Started with

√
s =

n

∑
i=1

√
m2

i +~p2
i

we rescale momenta with common factor k,

√
s =

n

∑
i=1

√
q2

i + k~p2
i

to preserve overall energy/momentum.
→ resulting jets are boosted accordingly.

Stefan Gieseke · DESY MC school 09 31/35



Dipoles

Exact kinematics when recoil is taken
by spectator(s).

I Dipole showers.
I Ariadne.
I Recoils in Pythia.

I New dipole showers, based on
I Catani Seymour dipoles.
I QCD Antennae.
I Goal: matching with NLO.

I Generalized to IS–IS, IS–FS.
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Higher orders

No details on
I ME corrections:

I hard.
I soft.

I Matching with LO ME:
I MLM.
I CKKW.

I Matching with NLO:
I MC@NLO.
I POWHEG.
I Catani–Seymour dipoles/Antennae.
I . . .

Most active research in the field.
Little BSM (“dominated by hard stuff”). Mostly backgrounds.

Stefan Gieseke · DESY MC school 09 33/35



Outline Lecture II

I Hard scattering
I Matrix elements and phase space
I Mini event generator

I Parton showers
I e+e− annihilation and collinear limits
I Multiple emissions
I Sudakov form factor
I Parton cascades
I Coherence/angular ordering
I Misc aspects
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Outline

I Lecture I — Basics:
I Introduction
I Monte Carlo techniques

I Lecture II — Perturbative physics
I Hard scattering
I Parton showers

I Lecture III — Non–perturbative physics
I Hadronization
I Hadronic decays
I Underlying event
I MC programs
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