

Top2016 Highlights: Cross Sections and Single Top Results from ATLAS and CMS Collaborations

Callie Bertsche on behalf of the DESY ATLAS Group 10 October 2016

The Parameters

• 5 days in Czech Rep.

• 131 Participants

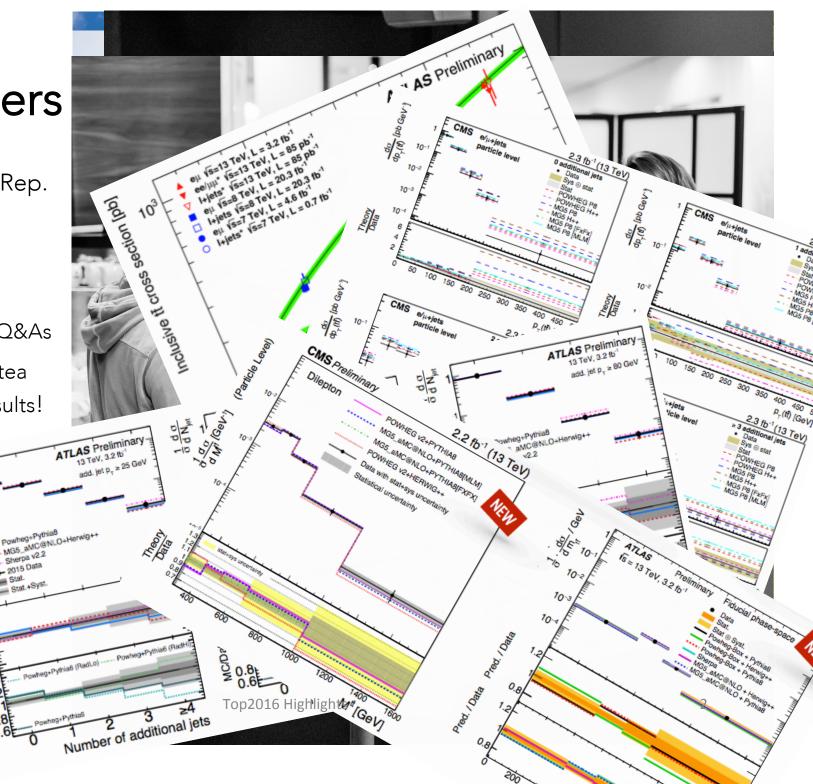
• 50 Talks

• 1 Poster Session

• 2 Young Scientist Q&As

• 351* coffee, 253* tea

• ...Lots of great results!


DO LO

* = +/- 90%

10

10-2

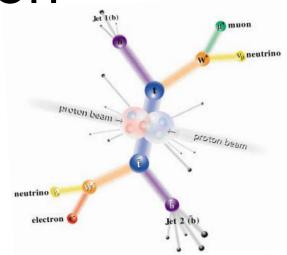
10

The Overview: ATLAS & CMS Measurement Highlights

- tT cross-section measurements
- tT differential cross-section measurements
- Single top measurements
- Mass and Properties: Hartmut Stadie's talk

Disclaimer! Too much to cover fully!

ALL REFERENCES AVAILABLE AT: https://indico.cern.ch/event/486433

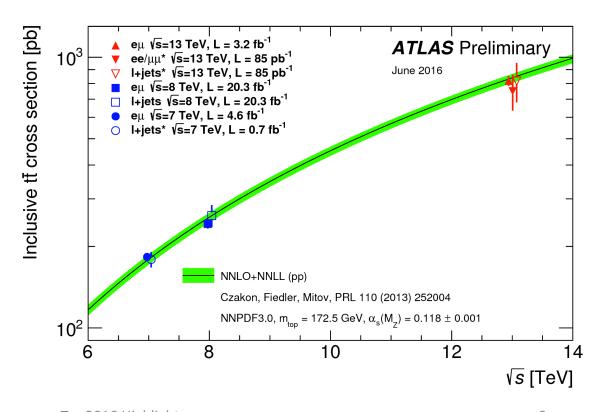


The Motivation

Top quark measurements are...

- Valuable tests of the Standard Model
 - QCD predictions
 - Bare quark studies as decays before hadronisation
- Excellent method for tuning simulations
 - QCD and PDF modelling
 - Parameter value measurement
- Important probes of new physics
 - Main background of many searches
 - Deviations in production point to or constrain new physics searches, such as stop quark production

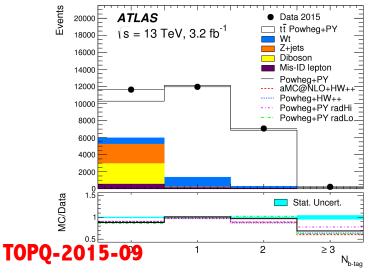
tT Cross-Section Measurements

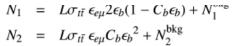

tT Cross-Section Measurements

13 TeV:

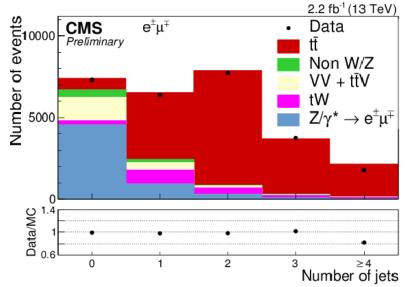
- ATLAS+CMS Dilepton $e\mu$ +2 b-tagged jets
- ATLAS Dilepton same flavor (ee/μμ channels)
- ATLAS+CMS Lepton+jets
- CMS All hadronic

7-8 TeV:


- ATLAS+CMS Dilepton eµ +2 b-tagged jets
- ATLAS+CMS Lepton+jets



Dilepton $e\mu+b$ -tagged Jets


- Clean precise measurement with ~3% background
- Select exactly: $e^{\pm}\mu^{\mp}$,
- Select ≥1 (CMS), 1-2 (ATLAS) b-tagged jets
- Strategic counting measurements

TOP-16-005

- ε_e eμ pre-selection selection efficiency
- ε_b: combined probability to reco and b-tag a jet within the fiducial volume
- $C_b = \varepsilon_{bb}/\varepsilon_b^2$: tagging correlation factor
 - represents change in tagging efficiency if one jet is already tagged

	Number of		
Source	$\mathrm{e}^{\pm}\mu^{\mp}$ events		
Drell–Yan	$24 \pm 9 \pm 4$		
Non-W/Z leptons	$109 \pm 50 \pm 33$		
Single top quark	$463 \pm 6 \pm 145$		
VV	$15\pm2\pm5$		
tī V	$31 \pm 1 \pm 10$		
Total background	$642 \pm 52 \pm 149$		
t t dilepton signal	$10199 \pm 14 \pm 462$		
Data	10368		

Top2016 Highlights

Dilepton $e\mu+2$ b-tagged Jets

13 TeV: Consistent Results between Collaborations and SM

	7 TeV [pb] (stat,syst,lum,beam)	8 TeV [pb] (stat,syst,lum,beam)	13 TeV [pb] (stat,syst,lum,beam)
SM	177.3±9.0+4.6-6.0	252.9±11.7+6.4-8.6	832+40-46
CMS	173.6±2.1+4.5-4.0±3.8	244.9±1.4+6.3-5.5±6.4	793±8±38±21
ATLAS	182.9±3.1±4.2±3.6±3.3	242.4±1.7±5.5±7.5±4.2	818±8±27±19±12

ATLAS: 3.9-4.4% uncertainty

CMS: 3.6-5.6% uncertainty (excl. beam uncert.)

Lepton e/μ + Jets

ATLAS 13 TeV:

- 1 energetic e or μ
- ≥4 jets, ≥1 b-tagged jet
- e+jets: $E_T^{miss} > 40 \text{ GeV or } m_T^W > 50 \text{ GeV}$; μ +jets: $E_T^{miss} + m_T^W > 60 \text{ GeV}$

Extract cross section:
$$\sigma_{t\bar{t}}^{\ell j} := \frac{N_{\mathrm{Obs}}^{\ell j} - N_{\mathrm{Bgr}}^{\ell j}}{\varepsilon_{\ell j} \cdot \mathcal{L}_{\mathrm{Int}}}$$

CMS 13 TeV: TOP-16-006

- 1 energetic e or μ
- ≥1 jet
- Categorize analysis by number of jets and b-tagged jets
- Simultaneous binned likelihd
- Shaped fit in 44 categories of jets, b-tagged jets
- Extract cross section

Lepton e/µ +Jets

ATLAS 13 TeV:

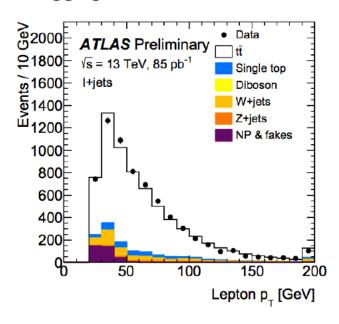
CMS 13 TeV:

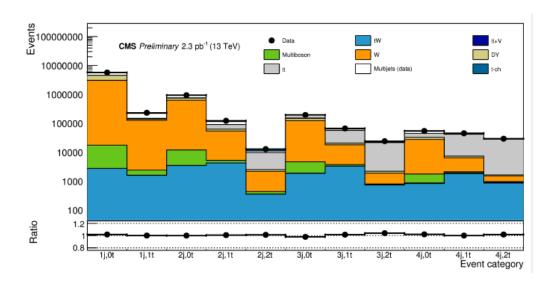
Result: 817 ± 13 (stat) ± 103 (syst) ± 88 (lumi) pb

 $\sigma = 834.7 \pm 2.5(stat) \pm 20.7(syst)$

 \pm 22.6(lumi) \pm 12.5(extrapol)

total: 17%


stat.: 1.5%


syst.: 13%

ttbar hadronisation: 4.1%

JES: 10%

b-tagging: 4.1%

tT Differential Cross-Section Measurements

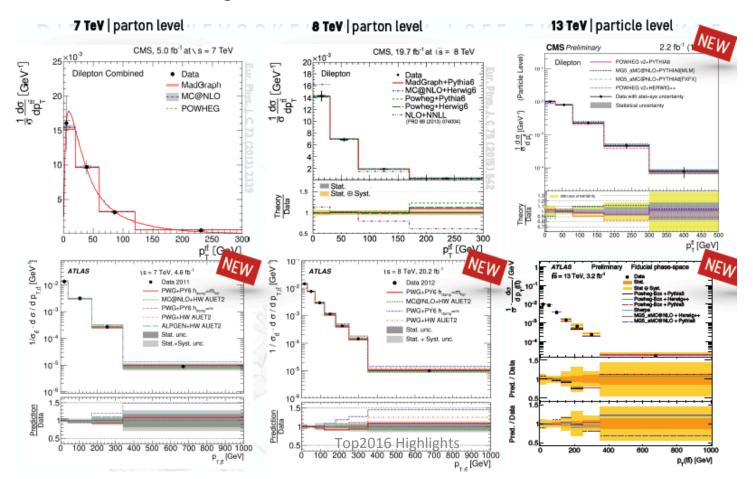
tT Differential Cross-Section Measurements

13 TeV:

- ATLAS+CMS Dilepton
- ATLAS+CMS Lepton+jets
- ATLAS+CMS All-hadronic

7-8 TeV:

- ATLAS+CMS Dilepton
- ATLAS+CMS Lepton+jets
- CMS All-hadronic

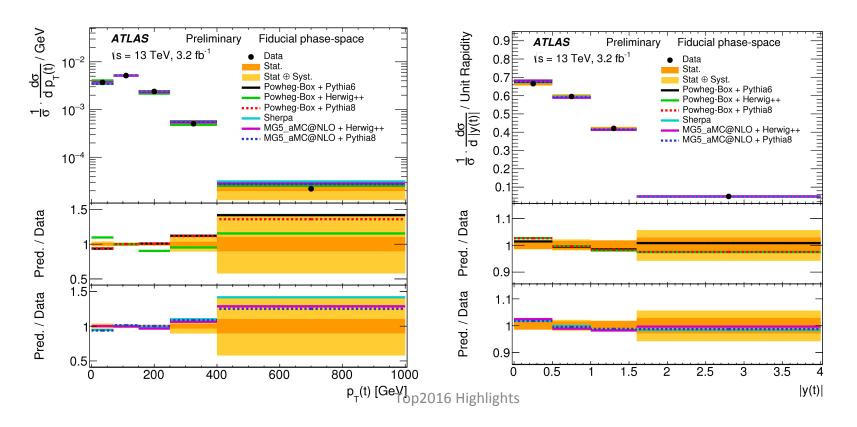

...As functions of a range of variables

- Ordered jet p_T
- Number of extra jets above p_T thresholds
- Scalar sum H_T of extra jet p_T
- Distance between two leading extra jets ΔR
- Top quark pair mass system
- Top quark pair p_T
- ...And more combinations of locations of top quark pairs, mass, etc

13 TeV Differential Cross-Section: Dilepton $e\mu+b$ -tagged Jets

ATLAS+CMS:

- Select exactly $e^{\pm}\mu^{\mp}$, $\geq 1-2$ b-tag jets
- Plot as function of range of variables

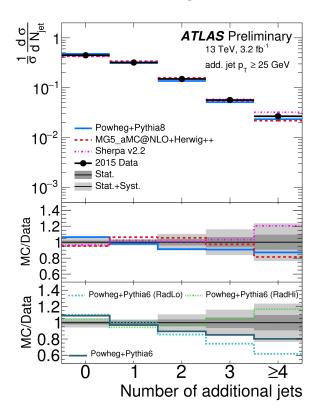


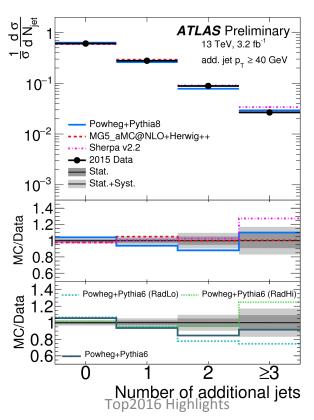
13 TeV Differential Cross-Section: Dilepton $e\mu+2$ b-tagged Jets

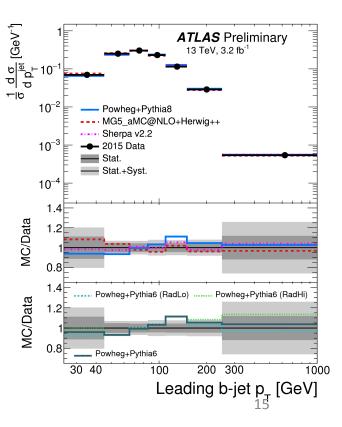
ATLAS:

- Select exactly $e^{\pm}\mu^{\mp}$, ≥ 2 b-tag jets
- Unfold to particle level
- As range of kinematic variables

TOPQ-2016-04

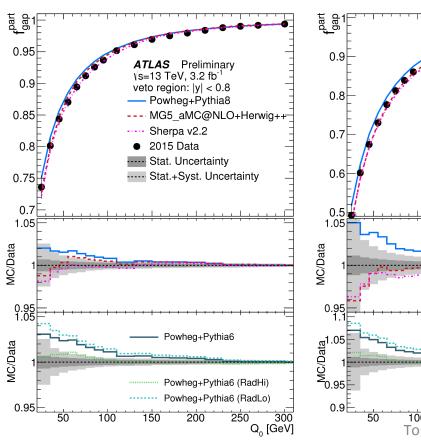

13 TeV Differential Cross-Section: Dilepton $e\mu+2$ b-tagged Jets

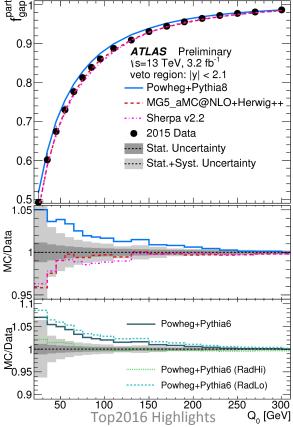

ATLAS:


- Select exactly $e^{\pm}\mu^{\mp}$, ≥ 2 b-tag jets
- Unfold to particle level

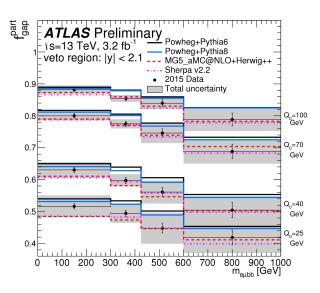
TOPQ-2015-17

Plot as range of variables, including extension to gap fraction



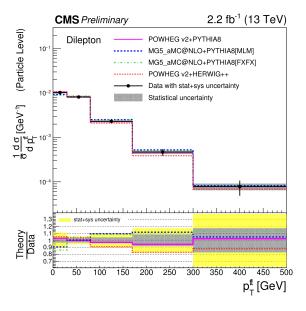


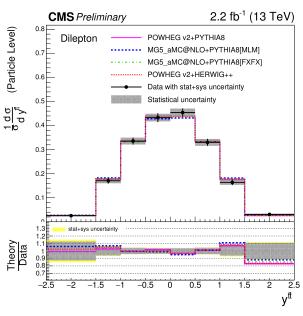
13 TeV Differential Cross-Section: Dilepton $e\mu$ +2 b-tagged Jets


ATLAS:

- Extension: Measure as fraction of events without additional jet activity
- For a variety of rapidity regions and invariant mass of the eubb system

TOPQ-2015-17

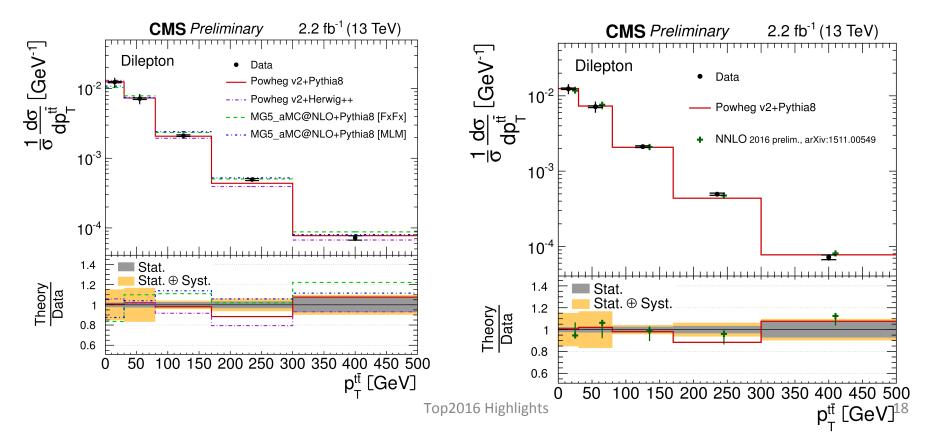

13 TeV Differential Cross-Section: Opposite-sign Dilepton + 2 Jets


CMS:

- Select two leptons of opposite sign, at least two jets, missing p_T
- Unfold to particle, parton level

Plot as range of variables

TOP-16-007


13 TeV Differential Cross-Section: Opposite-sign Dilepton + 2 Jets

CMS:

- Select two leptons of opposite sign, at least two jets, missing p_T
- Unfold to particle, parton level

Plot as range of variables

TOP-16-011

Single Top Measurements

Single Top Measurements

Production Mechanisms:

t-channel: CMS+ATLAS Inclusive 13 TeV cross-section,

CMS Differential 13 TeV cross-section

CMS Fiducial 8 TeV cross-section

ATLAS Differential 8 TeV cross-section

s-channel: CMS 7-8 TeV Search

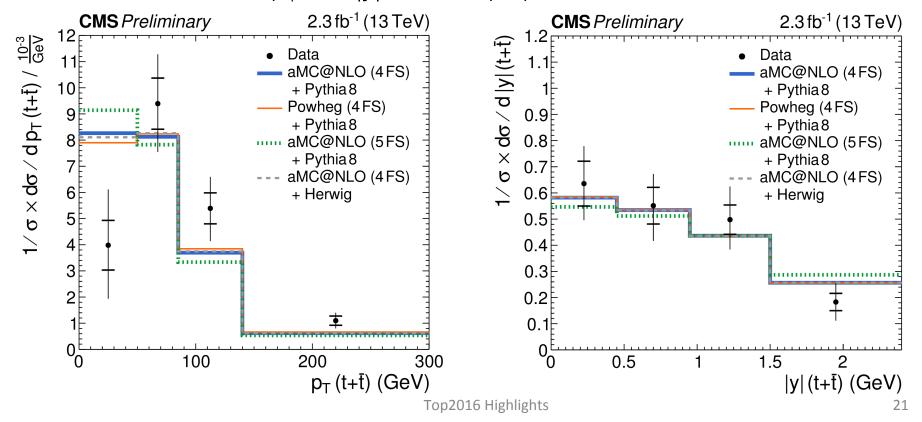
ATLAS 8 TeV cross-section

Wt-channel: ATLAS 13 TeV cross-section

CMS: Study of Wtb coupling, vtb

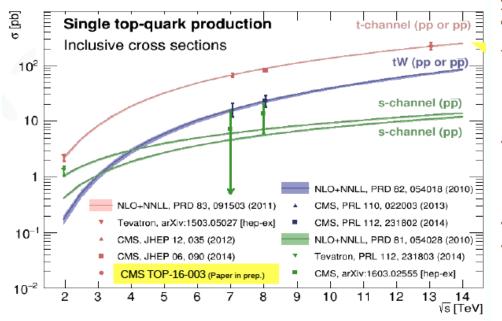
measurement, polarized sample measuring

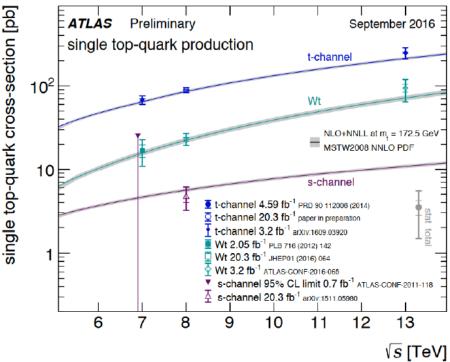
polarization


t-channel 13 TeV Differential Cross-Section

CMS:

• Select exactly one μ , one b-jet, one light jet, E_{Tmiss}


TOP-16-004


- Unfold to parton level
- Plot as function of p_T and |y| of the top quark

Single Top Measurements

Comprehensive t-channel results at 8 TeV Results at 13 TeV consistent so far Main systematic: generator modelling

The Summary

- Broad range of strategic measurements at full LHC energy range!!!
- Analyses use variety of unfolding methods and variable distributions for strategic comparisons with theory
- 13 TeV results complement 7 and 8 TeV results
- ATLAS and CMS measurements complementary and consistent
- MC tuning studies ongoing
- Many more results to come using 13 TeV results with 2016 data!

Thank you!