Search for a neutral MSSM Higgs boson decaying into two tau leptons at 13 TeV

Teresa Lenz (on behalf of the DESY CMS group)

LHC Physics Discussions (DESY)

November 14th, 2016

The Standard Model and beyond

- ► The Standard Model is a very successful theory, but suffers from shortcomings ...
 - Hierachy problem
 - Dark Matter
- Many possible extensions ...

The Standard Model and beyond

- The Standard Model is a very successful theory, but suffers from shortcomings ...
 - ► Hierachy problem
 - Dark Matter
 - ▶ ...
- Many possible extensions ...

+

The Minimal Supersymmetric Standard Model

- lacksquare Hierarchy problem: $\mathit{m}_{H}^{2} \propto \ln{\left(arLambda_{UV}
 ight)}$
- lacktriangledown R-parity conserved ightarrow Lightest sparticle stable ightarrow DM candidate

The Higgs sector of the MSSM

- Two higgs doublets needed because of
 - Supersymmetry condition (holomorphic superpotential)
 - Anomaly cancellation (fermion triangle anomalies)

After sponatenous symmetry breaking (8-3 degrees of freedom):

- ▶ Relevant parameters in the higgs sector: tan β , M_A
- ▶ Lightest Higgs (h_0) usually associated with H(125 GeV) state

Search for H_0 and A_0

(would be an unambiguous proove of new physics)

Searching for a heavy Higgs with tau leptons

Why to search in the ditau final state?

Higgs coupling proportional to mass

$$o au, oldsymbol{b}, oldsymbol{t}$$

▶ Large $\tan \beta \rightarrow \text{couplings to down-type fermions are enhanced}$

$$o au, oldsymbol{b}$$

Good discrimination against SM processes: LHC = pp collider

$$\rightarrow \tau$$

Searching for a heavy Higgs with tau leptons

Why to search in the ditau final state?

▶ Higgs coupling proportional to mass

$$o au, oldsymbol{b}, oldsymbol{t}$$

▶ Large $\tan \beta \rightarrow \text{couplings to down-type fermions are enhanced}$

$$o au, oldsymbol{b}$$

► Good discrimination against SM processes: LHC = pp collider

$$\overbrace{
ightarrow au}$$

Promising channel to search for new physics in the Higgs sector

The tau lepton and its detection

- ▶ Down-type lepton, charged, m = 1.7 GeV
- ► Tau lifetime = $3 \cdot 10^{-13}$ s
- \rightarrow only decay products are detectable

Tau decays

Decay mode	Meson resonance	$\mathcal{B}\left[\% ight]$
$ au^- ightarrow \mathrm{e}^- \overline{ u}_\mathrm{e} u_ au$		17.8
$ au^- o \mu^- \overline{\nu}_\mu \nu_ au$		17.4
$ au^- ightarrow ext{h}^- u_ au$		11.5
$\tau^- \to {\rm h}^- \pi^0 \nu_\tau$	$\rho(770)$	26.0
$\tau^- \to \mathrm{h}^- \pi^0 \pi^0 \nu_\tau$	$a_1(1260)$	9.5
$\tau^- \to h^- h^+ h^- \nu_\tau$	$a_1(1260)$	9.8
$\tau^- \rightarrow \mathrm{h^-h^+h^-}\pi^0\nu_\tau$		4.8
Other modes with hadrons		3.2
All modes containing hadrons		64.8

Reconstruction of taus at the CMS detector

- ▶ **Leptonic decays:** standard muon/electron reconstruction
- ► Hadronic decays: "Hadrons-plus-strips algorithm" (particle flow)

Reconstruction of hadronically decaying taus (τ_h) :

- 1. Seeded by a jet
- 2. Photon/electron constituents are collected in "strips" (ECAL)
- 3. au_h candidates formed by combining "strips" and charged jet constituents
- 4. Identification of decay mode (based on #charged particles, #strips and mass hypothesis)
- 5. Discrimination against jets (MVA based) and e, μ (discriminators)
- ► New for 13 TeV: "dynamic" strip size, ...

Search for a neutral MSSM Higgs boson at $13 \, \text{TeV}$ with $12.9 \, \text{fb}^{-1}$

(CMS-PAS-HIG-16-037)

Production modes of the Higgs boson

ightharpoonup Small, medium an eta

▶ Large $\tan \beta$

▶ no b-tags

 $ightharpoonup \geq 1$ b-tags

- → Search for events with two taus
- \rightarrow For 2 taus \rightarrow 4 of 6 possible "channels" used:

$$\tau_h \tau_h$$
, τ_h e, $\tau_h \mu$, e μ

 \rightarrow Generally differ in background composition \rightarrow optimized seperately

Event selection (channel dependent)

Selected pair required to be

- of opposite charge
- spacially seperated $\Delta R > 0.5(0.3)$

 $\tau_h \tau_h$, $\tau_h e$, $\tau_h \mu$, $e \mu$

	$\mu \tau_{\rm h}$	$e\tau_h$	$\tau_{\rm h} \tau_{\rm h}$	еµ	
Trigger	$\mu(22)$	e(25)	$\tau_h(35) \&$	μ(8) & e(23) or	
(threshold in GeV)			$\tau_h(35)$	μ(23) & e(12)	
	$p_{\rm T}^{\mu} > 23 \text{ GeV},$	$p_{\rm T}^{\rm e} > 26 {\rm GeV}$,	$p_{\rm T}^{\iota_h} > 40 \text{ GeV},$	$p_{\rm T}^{\mu} > 10(24) \text{ GeV}$	
Offline		$ \eta^{\rm e} < 2.1$		$ \eta^{\mu} < 2.4$	
selection	$p_{\rm T}^{\tau_h} > 30 \text{ GeV},$	$p_{\rm T}^{\tau_h} > 30 \text{ GeV},$	$p_{\rm T}^{\tau_h} > 40 \text{ GeV},$	$p_{\rm T}^{\rm e} > 13(24) \text{ GeV}$	
	$ \eta^{\tau_h} < 2.3$	$ \eta^{\tau_h} < 2.3$	$ \eta^{ au_h} < 2.1$	$ \eta^{\rm e} < 2.5$	
Additional ID	Medium ID	MVA ID 80%	-	Medium ID	
	-	-	-	MVA ID 80%	
Isolation	$I_u^{rel} < 0.15$	$I_{\rm e}^{rel} < 0.1$	MVA Tight	$I_u^{rel} < 0.2$	
	MVA Medium	MVA Medium	MVA Tight	$I_{\rm e}^{'rel} < 0.15$	
Impact parameter (cm)	$d_{xy}^{\mu} < 0.045$	$d_{xy}^{e} < 0.045$	$d_z^{\tau_h} < 0.2$	$d_{xy}^{\mu/e} < 0.045$	
	$d_z^{\mu} < 0.2$	$d_z^{\rm e} < 0.2$	$d_z^{\tau_h} < 0.2$	$d_z^{\mu'/e} < 0.2$	
	$d_z^{\overline{\tau}_h} < 0.2$	$d_z^{\tau_h} < 0.2$			
Lepton vetoes	No loose $\mu^+\mu^-$	No loose e ⁺ e ⁻		-	
	pair with	pair with			
	$p_{\rm T}^{\mu} > 15 \; {\rm GeV}$	$p_{\rm T}^{\rm e} > 15 \text{ GeV}$			
	No additional loose e with $p_{\rm T} > 10$ GeV and $ \eta < 2.5$				
No additional loose μ with $p_T > 10$ GeV and $ \eta < 2.4$					

Background contributions

What processes can also lead to two taus (and b-jets) in the final state?

ightharpoonup Z
ightarrow au au:

Two taus in final state (contributing to all four channels)

► W+jets:

Fake tau from jet + lepton from W-decay (largest in $e au_h$, μau_h)

QCD multijet:

Two fake taus from jet (largest in $\tau_h \tau_h$)

 $ightharpoonup t\overline{t}$ +jets:

Lepton pair from two W-decays (largest in $e\mu$)

Final selection

- ▶ Reduction of W+jets in $e\tau_h$, $\mu\tau_h$:
 - $m_{\rm T} = \sqrt{2 p_{\rm T}^{e,\mu} \not\!\! E_{\rm T} (1 cos \Delta \phi)} < 50 \, {\rm GeV} (40 \, {\rm GeV})$
- ▶ Reduction of $t\bar{t}$ in $e\mu$:

$$\begin{array}{ll} \blacktriangleright & D_{\zeta} = P_{\zeta} - 1.85 \cdot P_{\zeta}^{\mathrm{vis}} > -20 \, \mathrm{GeV} \\ & \mathrm{with} \ P_{\zeta} = \left(\vec{p}_{\mathrm{T}}^{e} + \vec{p}_{\mathrm{T}}^{\mu} + \vec{p}_{\mathrm{T}}^{\mathrm{miss}}\right) \cdot \frac{\vec{\zeta}}{|\vec{\zeta}|} \, \, \mathrm{and} \, \, P_{\zeta}^{\mathrm{vis}} = \left(\vec{p}_{\mathrm{T}}^{e} + \vec{p}_{\mathrm{T}}^{\mu}\right) \cdot \frac{\vec{\zeta}}{|\vec{\zeta}|} \end{array}$$

Estimation of background contributions

$$Z/\gamma o au au$$

- ▶ Prediction taken from Monte Carlo (MC) simulation
- ▶ Shape correction in p_T^Z with data events
- Normalization: $Z \to \mu\mu$ control region included in final fit

$t\overline{t}$ +jets

- Prediction taken from MC simulation
- ▶ Shape correction in top p_T
- ▶ Validation: control region with high $t\bar{t}$ purity in the $e\mu$ channel

Estimation of background contributions

QCD multijet

for $\mu \tau_h$, $e \tau_h$, $e \mu$

- Fully data-based estimation ("ABCD-like")
 - ► Estimated in control region with same-sign (SS) charges of leptons
 - SS→OS extrapolation factor determined in sideband with looser lepton isolation

W+jets

for $\mu \tau_h$ and $e \tau_h$; others: fully simulation based

- Taken from MC simulation
- Corrected for data/MC differences in high m_T control region

Mutual dependency: QCD and $W+{
m jets}$ estimated simultaneously in final fit

Results

Final observable: The total transverse mass

$$m_{\mathrm{T}}^{\mathrm{tot}} = \sqrt{m_{\mathrm{T}} \left(E_{\mathrm{T}}, \tau_{1}^{\mathit{vis}} \right)^{2} + m_{\mathrm{T}} \left(E_{\mathrm{T}}, \tau_{2}^{\mathit{vis}} \right)^{2} + m_{\mathrm{T}} \left(\tau_{1}^{\mathit{vis}}, \tau_{2}^{\mathit{vis}} \right)^{2}}$$

with
$$m_{\mathsf{T}}\left(1,2\right) = \sqrt{2 \cdot p_{\mathsf{T}}^1 \cdot p_{\mathsf{T}}^2 \left(1 - \cos\left(\Delta \phi_{1,2}\right)\right)}$$

Model independent interpretation

- Background-only hypothesis: SM without Higgs
- Limits seperately set for $gg\phi$ or $bb\phi$

Model independent interpretation

- lacksquare 2d limit plots in $gg\phi$ and $bb\phi$
- ▶ Red point: Best fit value for a 125 GeV SM Higgs only

Sensitivity of different channels

- ightharpoonup $au_h au_h$: best sensitivity in high mass region due to rapid falling QCD bkg
- $e\mu$: good sensitivity in very high mass region due to vanishing $t\overline{t}$ events

Model dependent interpretation

- ► MSSM benchmark scenarios: m_h^{mod+} and hMSSM
- $m_h = 125 \pm 3 \,\text{GeV}$ over large part of parameter space

Conclusion

- ▶ Brand new result from CMS $H \rightarrow \tau \tau$ search at 13 TeV!
 - http://cds.cern.ch/record/2231507
- Builds upon earlier analyses with improvements
 - Use of m_T^{tot} as discriminating variable
 - Adding $Z \to \mu\mu$ control region to the final fit
- First time limits extend to M_A beyond 1TeV
- Most sensitive analysis in the large $\tan \beta$ and high mass phase space

Thank you