Humboldt-Universität zu Berlin Institute of Physics Quantum Field and String Theory Group

Symmetries of the S-matrix

Josua Faller josua.faller@physik.hu-berlin.de

supervised by Jan Plefka

September 19, 2016

Motivation and Outline

- ► Importance of symmetries
- Restrictions on possible symmetries for physical theories

Symmetries as Guiding Principles

Symmetries and Theories

- ► Simplifies calculations, e.g. Kepler problem
- Symmetries form a paradigm in current theoretical physics
 - Physical theories are dictated by symmetries
 - e.g. General Relativity (diffeomorpism invariance), Gauge Theories (invariance under gauge transformations)

Hence:

 Better understanding of symmetries will lead to a deeper understanding of possible theories

Coleman-Mandula Theorem

Properties of a symmetry generator

- A symmetry transformation should not change the outcome of a measurement
- 2. A symmetry generator should act on incoming and outgoing particles the same way
- 3. A symmetry generator should act on multiparticle states locally

Coleman-Mandula Theorem

Coleman, Mandula (1967)

If a theory conserves momentum, energy and rotation in space-time (Poincaré symmetry), any additional conserved quantity is independent of these space-time transformations.

Coleman-Mandula Theorem

Properties of a symmetry generator B_{l}

- 1. A symmetry transformation should not change the outcome of a measurement, i.e. $B_l = B_l^{\dagger}$
- 2. A symmetry generator should act on incoming and outgoing particles the same way, i.e. $[S, B_I] = 0$
- 3. A symmetry generator should act on multiparticle states locally, i.e. $B_I^{\text{two particle}} |p_1, p_2\rangle = \left(B_I^{(1)} |p_1\rangle\right) |p_2\rangle + |p_1\rangle \left(B_I^{(2)} |p_2\rangle\right)$

Coleman-Mandula Theorem

Coleman, Mandula (1967)

If a theory conserves momentum, energy (P_{μ}) and rotation $(M_{\mu\nu})$ in space-time (Poincaré symmetry), any additional conserved quantity (B_l) is independent of these space-time transformations.

$$[P_{\mu}, B_{l}] = [M_{\mu\nu}, B_{l}] = 0$$

Coleman-Mandula Theorem

Properties of a symmetry generator

- A symmetry transformation should not change the outcome of a measurement
- 2. A symmetry generator should act on incoming and outgoing particles the same way
- 3. A symmetry generator should act on multiparticle states locally

Coleman-Mandula Theorem

Coleman, Mandula (1967)

<u>For the massless case:</u> Each additional conserved quantity commutes with the conformal algebra

Haag-Łopuszański Sohnius (HLS)

► A new type of symmetry with many nice properties has been proposed: Supersymmetry

Therefore: Most general form of (super-)symmetries which commute with the S-matrix?

HLS-Theorem

Haag-Łopuszański Sohnius (1974)

By considering fermionic conserved quantities and the most general symmetry group for massless particles is superconformal symmetry

► The inclusion of fermionic generators has been the generalization of the approach of Coleman and Mandula

Further Generalization

Non-local symmetries:

▶ At tree level superconformal Yang-Mills $\mathcal{N}=4$ possesses a (non-local) symmetry: Yangian symmetry

Drummond, Henn, Plefka (2009)

► The generators of this Yangian symmetry commute with the S-matrix

Therefore: Most general form of non-local symmetries which commute with the S-matrix?

Further Generalization

Non-local symmetries:

 \blacktriangleright At tree level superconformal Yang-Mills $\mathcal{N}=4$ possesses a (non-local) symmetry: Yangian symmetry

Drummond, Henn, Plefka (2009)

 The generators of this Yangian symmetry commute with the S-matrix

Therefore: Most general form of non-local symmetries which commute with the S-matrix?

$$J_{A}^{\text{two particle}}\left|p_{1},p_{2}\right\rangle = \left(J_{A}^{(1)}\left|p_{1}\right\rangle\right)\left|p_{2}\right\rangle + \left|p_{1}\right\rangle\left(J_{A}^{(2)}\left|p_{2}\right\rangle\right) + f_{A}^{\;BC}\sum_{i < j}I_{B}^{i}\left|p_{1}\right\rangle\,I_{C}^{j}\left|p_{2}\right\rangle$$

Further Generalization

Non-local symmetries:

 \blacktriangleright At tree level superconformal Yang-Mills $\mathcal{N}=4$ possesses a (non-local) symmetry: Yangian symmetry

Drummond, Henn, Plefka (2009)

 The generators of this Yangian symmetry commute with the S-matrix

Therefore: Most general form of non-local symmetries which commute with the S-matrix?

$$J_{A}^{\text{two particle}}\left|\rho_{1},\rho_{2}\right\rangle = \left(J_{A}^{(1)}\left|\rho_{1}\right\rangle\right)\left|\rho_{2}\right\rangle + \left|\rho_{1}\right\rangle\left(J_{A}^{(2)}\left|\rho_{2}\right\rangle\right) + \textit{f}_{A}^{\;BC}\sum_{i < j}\textit{I}_{B}^{i}\left|\rho_{1}\right\rangle\textit{I}_{C}^{j}\left|\rho_{2}\right\rangle$$

Yangian Symmetry

Yangian algebra of the Lie algebra of the superconformal group:

- ▶ Infinitely many generators; I_A , J_A , . . .
- ► I_A are generators of the superconformal symmetry
- ▶ Commutation relations:

$$[I_A, I_B] = f_{AB}{}^C I_C, \quad [I_A, J_B] = f_{AB}{}^C J_C$$

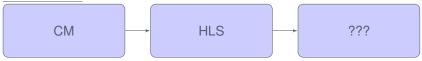
 Consistency for 2- and 3-particle states imposes non-trivial restrictions: Serre relations

Conclusion

Starting point:

 Symmetry group includes conformal group and the generators commute with S-matrix

General idea:

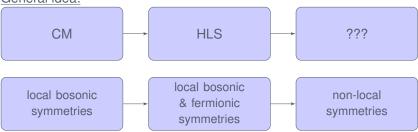


Conclusion

Starting point:

 Symmetry group includes conformal group and the generators commute with S-matrix

General idea:



Thank you for your attention