Theoretical Introduction to LHC Physics

GRK Autumn Block Course
Berlin - September 2016
Barbara Jäger
University of Tübingen

bibliography

these lectures are based on many references, including:
\checkmark lectures at the Maria Laach School
(in particular those by A. Denner, M. Krämer, M. Mühlleitner, L. Reina)
\leftrightarrow lectures on specific topics (G. Salam, G. Zanderighi)

- textbooks:
- Ellis, Sterling, Webber: QCD and collider physics
- Quigg: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions
- Muta: Foundations of Quantum Chromodynamics
- Schwartz: Quantum Field Theory and the Standard Model
- Halzen, Martin: Quarks and Leptons
- the Standard Model of elementary particles (SM)
- local gauge theories
- electroweak symmetry breaking
precision calculations for hadron colliders
- fixed-order perturbation theory
- beyond fixed order: parton shower simulations
physics at the LHC
- electroweak processes
- Higgs physics
summary \& conclusions

the $20^{\text {th }}$ century picture of elementary particles

the $20^{\text {th }}$ century picture of elementary particles

THE STANDARD MODEL

electromagnetism
$U(1)_{\text {EM }}$

interactions described by local gauge theories
quantum chromodynamics

$$
\boldsymbol{S U}(3)_{\text {color }}
$$

the concept of gauge transformations

electrodynamics: physics of the \vec{E} and \vec{B} fields is described by Maxwell's equations:

$$
\begin{array}{ll}
\vec{\nabla} \cdot \vec{E}=\rho, & \vec{\nabla} \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0 \\
\vec{\nabla} \cdot \vec{B}=0, & \vec{\nabla} \times \vec{B}-\frac{\partial \vec{E}}{\partial t}=\vec{j}
\end{array}
$$

\checkmark alternative notation: em. fields $\vec{E}, \vec{B} \longleftrightarrow$ scalar and vector potential ϕ, \vec{A}

$$
\vec{B}=\vec{\nabla} \times \vec{A}, \quad \vec{E}=-\frac{\partial \vec{A}}{\partial t}-\vec{\nabla} \phi
$$

\checkmark changing ϕ, \vec{A} in a specific way

$$
\begin{aligned}
& \vec{A} \rightarrow \overrightarrow{A^{\prime}}=\vec{A}+\vec{\nabla} \chi \\
& \phi \rightarrow \phi^{\prime}=\phi-\partial \chi / \partial t \\
& \rightarrow \text { no impact on } \overrightarrow{\boldsymbol{E}}, \overrightarrow{\boldsymbol{B}}
\end{aligned}
$$

the concept of gauge transformations

\downarrow changing ϕ, \vec{A} in a specific way

$$
\begin{aligned}
\vec{A} & \rightarrow \vec{A}^{\prime}=\vec{A}+\vec{\nabla} \chi \\
\phi & \rightarrow \phi^{\prime}=\phi-\partial \chi / \partial t
\end{aligned}
$$

\rightarrow no impact on $\overrightarrow{\boldsymbol{E}}, \overrightarrow{\boldsymbol{B}}$:

$$
\begin{aligned}
\vec{B} \rightarrow \vec{B}^{\prime} & =\vec{\nabla} \times(\vec{A}+\vec{\nabla} \chi)=\vec{\nabla} \times \vec{A} \\
\vec{E} \rightarrow \vec{E}^{\prime} & =-\frac{\partial(\vec{A}+\vec{\nabla} \chi)}{\partial t}-\vec{\nabla}(\phi-\partial \chi / \partial t) \\
& =-\frac{\partial \vec{A}}{\partial t}-\frac{\partial(\vec{\nabla} \chi)}{\partial t}-\vec{\nabla} \phi+\vec{\nabla}(\partial \chi / \partial t) \\
& =-\frac{\partial \vec{A}}{\partial t}-\vec{\nabla} \phi
\end{aligned}
$$

gauge transformation: change fields in a well-defined manner such that physics does not change

Maxwell's equations in covariant form

\checkmark more compact: covariant notation with

$$
A^{\mu}=(\phi, \vec{A}), \quad j^{\mu}=(\rho, \vec{j})
$$

\rightarrow Maxwell's equations:

$$
\square A^{\mu}-\partial^{\mu}\left(\partial_{\nu} A^{\nu}\right)=j^{\mu}
$$

\rightarrow gauge transformation:

$$
A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \chi
$$

\uparrow alternative: introduce field-strength tensor:

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}
$$

\rightarrow Maxwell's equations:

$$
\partial_{\mu} F^{\mu \nu}=j^{\nu}
$$

Quantum Electrodynamics (QED)

interactions of charged particles (e.g. electrons) with photons described by:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QED}} & =\mathcal{L}_{\text {Dirac }}+\mathcal{L}_{\text {Maxwell }}+\mathcal{L}_{\text {interaction }} \\
& =\bar{\psi}(i \not D-m) \psi-\frac{1}{4} \boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}+e \bar{\psi} \gamma^{\mu} \psi \boldsymbol{A}_{\mu} \\
& =\bar{\psi}(i \not D-m) \psi-\frac{1}{4} \boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}
\end{aligned}
$$

crucial property: $\mathcal{L}_{\text {QED }}$ is invariant under a local gauge transformation:

$$
\psi(x) \rightarrow \psi^{\prime}=e^{i \alpha(x)} \psi(x), \quad A_{\mu} \rightarrow A_{\mu}+\frac{1}{e} \partial_{\mu} \alpha
$$

\rightarrow redefine lepton and photon fields at every point in space-time without changing the physics content of the theory nota bene: only works, if ψ and \boldsymbol{A}_{μ} are transformed together!

Quantum Electrodynamics (QED)

requirement of local gauge invariance restricts form of possible contributions to Lagrangian
example: transformation properties of photon mass term:

$$
\begin{aligned}
m^{2} A_{\mu} A^{\mu} \rightarrow m^{2} A_{\mu}^{\prime} A^{\prime \mu}= & m^{2}\left(A_{\mu}+\frac{1}{e} \partial_{\mu} \alpha\right)\left(A^{\mu}+\frac{1}{e} \partial^{\mu} \alpha\right) \\
= & m^{2}\left(A_{\mu} A^{\mu}+\frac{1}{e}\left(\partial_{\mu} \alpha\right) A^{\mu}+\right. \\
& \left.\frac{1}{e} A_{\mu}\left(\partial^{\mu} \alpha\right)+\frac{1}{e^{2}}\left(\partial_{\mu} \alpha\right)\left(\partial^{\mu} \alpha\right)\right) \\
\neq & m^{2} A_{\mu} A^{\mu}
\end{aligned}
$$

local gauge invariance violated

Quantum Chromodynamics (QCD)

theory that describes interactions of quarks and gluons
\rightarrow many similarities with QED, but also some differences:
\checkmark quarks are a bit like leptons, but there are three of each type
\checkmark gluons are a bit like photons, but there are eight of them
\checkmark gluons interact with themselves
\checkmark the QCD coupling g_{s} is larger than the QED one
f : quark flavor
i, j, a : color indices

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{Q}} \\
& \\
& \text { or } \\
& \text { es }
\end{aligned}
$$

covariant derivative:

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-g_{s} f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

$$
D_{i j}^{\mu}=\partial^{\mu} \delta_{i j}+i g_{s} t_{i j}^{a} A_{a}^{\mu}
$$

the gauge group of QCD

the gauge group of QCD is the special unitary group $S U(N)$ with $N=3$; the fundamental representation of $\operatorname{SU}(\mathrm{N})$ has $N^{2}-1$ generators $t^{a}=\frac{1}{2} \lambda^{a}$ formed by $N \times N$ traceless Hermitian matrices:

$$
U=e^{i \theta_{a}(x) t^{a}}, \quad a=1, \ldots, N^{2}-1
$$

with the Gell-Mann matrices λ^{a} :

$$
\begin{aligned}
& \lambda^{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \\
& \lambda^{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \lambda^{6}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \lambda^{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \lambda^{8}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & 0 & 0 \\
0 & \frac{1}{\sqrt{3}} & 0 \\
0 & 0 & \frac{-2}{\sqrt{3}}
\end{array}\right)
\end{aligned}
$$

the gauge group of QCD

important group property: commutator of two infinitesimal transformations:

$$
\begin{aligned}
{\left[U\left(\delta_{1}\right), U\left(\delta_{2}\right)\right] } & =\boldsymbol{U}\left(\delta_{1}\right) \boldsymbol{U}\left(\delta_{2}\right)-\boldsymbol{U}\left(\delta_{2}\right) \boldsymbol{U}\left(\delta_{1}\right) \\
& =\left(i \delta_{1}^{a}\right)\left(i \delta_{1}^{b}\right)\left[t^{a}, t^{b}\right]+\mathcal{O}\left(\delta^{3}\right)
\end{aligned}
$$

$$
\text { with }\left[t^{a}, t^{b}\right]=i f^{a b c} t_{c} \quad\left(f^{a b c} \ldots \text { structure constants of the group }\right)
$$

two matrices do not commute \rightarrow transformations do not commute (group is called non-Abelian)
compare:
\checkmark QED: Abelian gauge group $\mathrm{U}(1) \rightarrow$ transformations commute
\uparrow 3-dim rotations described by $\mathrm{SO}(3)$ group
\rightarrow transformations do not commute

gauge invariance of QCD

local SU(3) transformations include

- gauge transformation of the quark field

$$
\psi \rightarrow \psi^{\prime}=U(x) \psi
$$

- gauge transformations of the gluon field strength

$$
t^{a} \boldsymbol{F}_{\mu \nu}^{a} \rightarrow t^{a} \boldsymbol{F}_{\mu \nu}^{\prime a}=U(x) t^{a} \boldsymbol{F}_{\mu \nu}^{a} U^{-1}(x)
$$

\star the covariant derivative transforms "with the field" as

$$
D_{\mu} \psi \rightarrow D_{\mu}^{\prime} \psi^{\prime}=U(x) D_{\mu} \psi
$$

the QCD Lagrangian is indeed gauge invariant:

$$
\begin{aligned}
-\frac{1}{4}{F^{\prime}}_{\mu \nu}^{a}{\boldsymbol{F}^{\prime \mu \nu}}_{a} & =-\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu} \\
\sum_{f} \bar{\psi}_{i}^{(f)}\left(i D_{i j}^{\prime}-m \delta_{i j}\right) \psi_{j}^{\prime(f)} & =\sum_{f=1}^{N_{f}} \bar{\psi}_{i}^{(f)}\left(i D_{i j}-m \delta_{i j}\right) \psi_{j}^{(f)}
\end{aligned}
$$

electroweak interactions

theorist's postulate: description by local gauge theory, but. . .
\checkmark experimental fact:
the mediators of the weak force ($\boldsymbol{W}^{ \pm}$and Z bosons) are massive!
x theoretical problem:
explicit mass terms for gauge bosons violate local gauge invariance of the Lagrangian
\checkmark experimental fact:
mediators of the weak force ($W^{ \pm}$and Z bosons) are massive!
x theoretical problem:
explicit mass terms in Lagrangian violate local gauge invariance

- the solution:
spontaneous symmetry breaking

spontaneous breaking of local gauge symmetry

basic concept:

gauge boson sector of the $\mathrm{SM}: \mathcal{L}=\mathcal{L}_{\text {gauge }}+\mathcal{L}_{\text {Higgs }}$

- full Lagrangian invariant
- vacuum state not invariant
under electroweak symmetry
symmetry is spontaneously broken!

more details on spontaneous symmetry breaking

spontaneous symmetry breaking: Abelian gauge theory

recall $\mathrm{U}(1)$ local gauge theory with a spin-1 gauge field \boldsymbol{A}_{μ} :

$$
\mathcal{L}_{\text {gauge }}=-\frac{1}{4} \boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}
$$

\star explicit mass term of the form $\boldsymbol{m}^{2} \boldsymbol{A}_{\mu} \boldsymbol{A}^{\mu}$ violates gauge invariance
\rightarrow local gauge invariance a priori implies massless gauge boson
\checkmark how can we incorporate massive gauge bosons in the theory?
use a trick: add complex scalar field ϕ with charge $-e$:

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{4} \boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}+\left|D_{\mu} \phi\right|^{2}-V(\phi) \\
\text { with } V(\phi)=\mu^{2}|\phi|^{2}+\lambda|\phi|^{4} \\
D_{\mu}=\partial_{\mu}-\boldsymbol{i e} \boldsymbol{A}_{\mu}
\end{gathered}
$$

spontaneous symmetry breaking: Abelian gauge theory

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left|D_{\mu} \phi\right|^{2}-V(\phi), \quad \text { with } D_{\mu}=\partial_{\mu}-i e A_{\mu} \\
\qquad(\phi)=\mu^{2}|\phi|^{2}+\lambda|\phi|^{4} \\
\mu^{2}>0:
\end{gathered}
$$

unique minimum at $\phi=0$
QED with massless gauge field $\left(m_{A}=0\right)$ and additional scalar field $\left(m_{\phi}=\boldsymbol{\mu}\right)$

degenerate minima at

$$
|\phi|=\sqrt{-\frac{\mu^{2}}{2 \lambda}}=\frac{v}{\sqrt{2}}
$$

(phase arbitrary)

spontaneous symmetry breaking: Abelian gauge theory

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left|D_{\mu} \phi\right|^{2}-V(\phi), \quad \text { with } V(\phi)=\mu^{2}|\phi|^{2}+\lambda|\phi|^{4} \\
\mu^{2}<0: \text { minima at }|\phi|=\sqrt{-\frac{\mu^{2}}{2 \lambda}}=\frac{v}{\sqrt{2}}
\end{gathered}
$$

expand ϕ around vacuum expectation value \boldsymbol{v} :

$$
\begin{gathered}
\phi=\frac{1}{2}(v+H+i \chi) \\
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} \partial_{\mu} H \partial^{\mu} H+\partial_{\mu} \chi \partial^{\mu} \chi+e^{2} v^{2} A_{\mu} A^{\mu}+e v A^{\mu} \partial_{\mu} \chi \\
-e A^{\mu}\left(\chi \partial_{\mu} H-H \partial_{\mu} \chi\right)+\frac{1}{2} A_{\mu} A^{\mu}\left(H^{2}+\chi^{2}\right)-V(\phi)
\end{gathered}
$$

spontaneous symmetry breaking: Abelian gauge theory

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} \partial_{\mu} H \partial^{\mu} H+\partial_{\mu} \chi \partial^{\mu} \chi+e^{2} v^{2} A_{\mu} A^{\mu}+e v A^{\mu} \partial_{\mu} \chi \\
& -e A^{\mu}\left(\chi \partial_{\mu} H-H \partial_{\mu} \chi\right)+\frac{1}{2} A_{\mu} A^{\mu}\left(H^{2}+\chi^{2}\right)-V((v+H+i \chi) / 2)
\end{aligned} \quad \begin{aligned}
& \text { photon of mass } m_{A}=e v \quad \begin{array}{l}
\text { scalar field } H \text { with } \\
m_{H}^{2}=-2 \mu^{2}>0
\end{array} \\
& \text { (Goldstone boson) } \chi
\end{aligned}
$$

\leftrightarrow the mixed $(A-\chi)$ propagator can be removed by a gauge transformation:

$$
A_{\mu} \rightarrow A_{\mu}-\frac{1}{e v} \partial_{\mu} \chi \quad \text { and } \quad \phi \rightarrow e^{-i \chi / v} \phi \quad \text { (unitary gauge) }
$$

\rightarrow the field χ has been absorbed by a redefinition of \boldsymbol{A}
(" χ has been eaten" to give mass to the photon)

spontaneous symmetry breaking: Abelian gauge theory

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} \partial_{\mu} H \partial^{\mu} H+\partial_{\mu} \chi \partial^{\mu} \chi+e^{2} v^{2} A_{\mu} A^{\mu}+e v A^{\mu} \partial_{\mu} \chi \\
& -e A^{\mu}\left(\chi \partial_{\mu} H-H \partial_{\mu} \chi\right)+\frac{1}{2} A_{\mu} A^{\mu}\left(H^{2}+\chi^{2}\right)-V((v+H+i \chi) / 2)
\end{aligned}
$$

\checkmark balance of degrees of freedom:
before symmetry breaking:
massless gauge boson (2 d.o.f.) and complex scalar (2 d.o.f.) $=4$ total after symmetry breaking: massive gauge boson (3 d.o.f.) and physical scalar (1 d.o.f.) $=4$ total \checkmark

electroweak symmetry breaking (EWSB)

BROKEN SYMMETRY AND THE MASS OF GAUGE VECTOR MESONS*
F. Englert and R. Brout

Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
(Received 26 June 1964)

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS
Peter W. Higgs
Tatt Institute of Mathematical physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

GLOBAL CONSERVATION LAWS AND MASSLESS PARTICLES*
G. S. Guralnik, C. R. Hagens and T. W. B. Kibble

Department of Physics. Imperial College, London. England
(Received 12 October 1964)

Physical Review Letters (1964)

spontaneous symmetry breaking in the SM

- add complex scalar isodoublet:

$$
\Phi=\binom{\phi^{+}}{\phi^{0}}=\binom{\phi_{1}+i \phi_{2}}{\phi_{3}+i \phi_{4}}
$$

\uparrow scalar potential of the complex field:

$$
V(\Phi)=\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}, \lambda>0
$$

\checkmark for $\mu^{2}<0$: minimum of the potential at $|\Phi|=\sqrt{-\frac{\mu^{2}}{2 \lambda}} \equiv \frac{v}{\sqrt{2}}>0$
specific choice of phase breaks gauge invariance spontaneously;

$$
\text { typically choose: }\left\langle\Phi_{0}\right\rangle=\frac{1}{\sqrt{2}}\binom{0}{v}
$$

the Higgs sector of the SM

\checkmark Higgs field in unitary gauge: $\Phi=\frac{1}{\sqrt{2}}\binom{0}{v+H}$
\uparrow Higgs Lagrangian:

$$
\mathcal{L}_{\text {Higgs }}=\frac{1}{2} \partial_{\mu} H \partial^{\mu} H-\mu^{2} H^{2}-\lambda v H^{3}-\frac{1}{4} \lambda H^{4}
$$

Higgs mass $m_{H}=\sqrt{2} \mu=\sqrt{2 \lambda} v$
vacuum expectation value \leftrightarrow weak parameters $\frac{g^{2}}{8 m_{W}^{2}}=\frac{1}{2 v^{2}}$
Higgs self couplings in the SM
uniquely determined by the Higgs mass

generation of gauge-boson masses

... proceeds via the kinetic term of the scalar doublet

$$
\mathcal{L}_{\mathrm{kin}}=\left(D_{\mu} \Phi\right)\left(D^{\mu} \Phi^{\dagger}\right), \quad \text { with } \quad D_{\mu}=\partial_{\mu}+\frac{\boldsymbol{i g}}{2} \sigma^{i} W_{\mu}^{i}+\frac{\boldsymbol{i} \boldsymbol{g}^{\prime}}{2} \boldsymbol{B}_{\mu}
$$

$\sigma_{i} \quad \ldots \quad$ Pauli matrices
$g, g^{\prime} \ldots$ gauge couplings
$\boldsymbol{W}_{i}^{\mu}, B_{\mu} \ldots$ gauge fields
with $\boldsymbol{W}_{\mu}^{ \pm}=\boldsymbol{W}_{1}^{\mu} \pm \boldsymbol{W}_{2}^{\mu}$
covariant derivative of the underlying $S U(2) \times U(1)$ gauge theory
expand Φ about its vacuum expectation value in unitary gauge:

$$
\rightarrow D_{\mu} \Phi=\frac{1}{\sqrt{2}}\left[\partial_{\mu}+\frac{i g}{2}\left(\begin{array}{cc}
W_{\mu}^{3} & \sqrt{2} W_{\mu}^{-} \\
\sqrt{2} W_{\mu}^{+} & -W_{\mu}^{3}
\end{array}\right)+\frac{i g^{\prime}}{2} B_{\mu}\right]\binom{0}{v+H}
$$

generation of gauge-boson masses

$\rightarrow\left|D_{\mu} \Phi\right|^{2}=\frac{1}{2}\left(\partial_{\mu} H\right)^{2}+\frac{g^{2} v^{2}}{4} W^{+\mu} W_{\mu}^{-}+\frac{v^{2}}{8}\left(g W_{\mu}^{3}-g^{\prime} B_{\mu}\right)^{2}+$ interaction terms
\checkmark propagator for W^{3} and B fields not diagonal \rightarrow introduce new fields:

$$
\binom{W_{\mu}^{3}}{B_{\mu}}=\left(\begin{array}{cc}
\cos \theta_{W} & \sin \theta_{W} \\
-\sin \theta_{W} & \cos \theta_{W}
\end{array}\right)\binom{Z_{\mu}}{A_{\mu}}
$$

using the weak mixing angle

$$
\sin \theta_{W}=\frac{g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}}, \quad \cos \theta_{W}=\frac{g}{\sqrt{g^{2}+g^{\prime 2}}}
$$

generation of gauge-boson masses

$\rightarrow\left|D_{\mu} \Phi\right|^{2}=\frac{1}{2}\left(\partial_{\mu} H\right)^{2}+\frac{g^{2} v^{2}}{4} W^{+\mu} W_{\mu}^{-}+\frac{v^{2}}{8}\left(g W_{\mu}^{3}-g^{\prime} B_{\mu}\right)^{2}+$ interaction terms
massive gauge bosons:
$\checkmark Z_{\mu}=\frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\left(g W_{\mu}^{3}-g^{\prime} B_{\mu}\right)$, with mass $m_{Z}=\frac{v}{2} \sqrt{g^{2}+g^{\prime 2}}$
$\star W_{\mu}^{ \pm}$with mass $m_{W^{ \pm}}=\frac{g v}{2}$
\checkmark orthogonal superposition to Z boson:

$$
\text { massless photon } A_{\mu}=\frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\left(g W_{\mu}^{3}+g^{\prime} B_{\mu}\right)
$$

generation of fermion masses

... generated via Yukawa interactions; e.g. for electrons

$$
\mathcal{L}_{\text {Yuk }}^{\mathrm{e}}=-G_{e} \bar{e}_{L}^{i} \Phi_{i} e_{R}+h . c .=-\frac{G_{e}}{\sqrt{2}}\binom{\bar{\nu}_{L}}{\bar{e}_{L}}^{T}\binom{0}{v+H} e_{R}+\text { h.c. }
$$

\star electron mass term

$$
\mathcal{L}_{\text {Yuk }}^{\text {e,mass }}=-\frac{G_{e} v}{\sqrt{2}}\left(\bar{e}_{L} e_{R}+\bar{e}_{R} e_{L}\right)=-\frac{G_{e} v}{\sqrt{2}} \bar{e} e=-m_{e} \bar{e} e
$$

Yukawa coupling G_{e} related to electron mass m_{e} via

$$
G_{e}=\frac{\sqrt{2} m_{e}}{v}=g \frac{m_{e}}{\sqrt{2} m_{W}}
$$

interaction between electron and Higgs boson

$$
\mathcal{L}_{\text {Yuk }}^{\text {e,int }}=-\frac{G_{e} v}{\sqrt{2}} \bar{e} H e=-g \frac{m_{e}}{\sqrt{2} m_{W}} \bar{e} H e
$$

generation of quark masses

... also generated via Yukawa interactions; e.g. for the first generation:

$$
\mathcal{L}_{\text {Yuk }}^{\mathrm{q}}=-G_{d} \bar{q}_{L}^{i} \Phi_{i} d_{R}+h . c .-G_{u} \varepsilon_{i j} \bar{q}_{L}^{i} \Phi^{\dagger j} u_{R}+\text { h.c. }
$$

d-quark mass:
u-quark mass:

$$
m_{d}=\frac{G_{d}}{\sqrt{2}} v=\sqrt{2} \frac{G_{d} m_{W}}{g}
$$

$$
m_{u}=\frac{G_{u}}{\sqrt{2}} v=\sqrt{2} \frac{G_{u} m_{W}}{g}
$$

\checkmark interaction between the quarks and the Higgs boson

$$
\mathcal{L}_{\text {Yuk }}^{\text {q,int }}=-g \frac{m_{d}}{\sqrt{2} m_{W}} \bar{d} H d-g \frac{m_{u}}{\sqrt{2} m_{W}} \bar{u} H u
$$

\checkmark note: adding more generations introduces mixing in the Yukawa interactions

the Standard Model with one family

$$
\mathcal{L}_{\mathrm{SM}, 1}=\sum_{\text {gauge bosons }}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\sum_{\text {termions }} i \bar{\psi} \gamma^{\mu} D_{\mu} \psi+\mathcal{L}_{\text {Yuk }}+\left|D_{\mu} \Phi\right|^{2}-V(\Phi)
$$

with $F_{\mu \nu}=-\frac{1}{i g}\left[D_{\mu}, D_{\nu}\right]$ and $D_{\mu}=\partial_{\mu}+\frac{i g}{2} \sigma^{i} W_{\mu}^{i}+i g^{\prime} Y B_{\mu}+\frac{i g_{g}}{2} T^{a} G_{\mu}^{a}$
$\uparrow \boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}$ term generates
interactions among the gauge bosons, e.g.:

$$
W_{\mu \nu}^{i} W^{i \mu \nu} \rightarrow g \varepsilon_{i j k}\left(\partial_{\mu} W_{\nu}^{i}\right) W^{j \mu} W^{k \nu}-\frac{1}{4} \varepsilon_{i j k} \varepsilon_{i l m} W_{\mu}^{j} W_{\nu}^{k} W^{l \mu} W^{m \nu}
$$

the Standard Model with one family

$$
\mathcal{L}_{\mathrm{SM}, 1}=\sum_{\text {gauge bosons }}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\sum_{\text {termions }} i \bar{\psi} \gamma^{\mu} D_{\mu} \psi+\mathcal{L}_{\text {Yuk }}+\left|D_{\mu} \Phi\right|^{2}-V(\Phi)
$$

with $F_{\mu \nu}=-\frac{1}{i g}\left[D_{\mu}, D_{\nu}\right]$ and $D_{\mu}=\partial_{\mu}+\frac{i g}{2} \sigma^{i} W_{\mu}^{i}+i g^{\prime} Y B_{\mu}+\frac{i g_{s}}{2} T^{a} G_{\mu}^{a}$
$\star i \bar{\psi} \gamma^{\mu}{ }_{\mu} \psi$ term generates
interactions among fermions and gauge bosons, e.g.:

$$
\begin{aligned}
& i \bar{\ell}_{L} \gamma^{\mu} D_{\mu} \ell_{L}+i \bar{e}_{R} \gamma^{\mu} D_{\mu} e_{R} \\
= & -\frac{g}{2 \sqrt{2}} \bar{\nu} \gamma^{\mu}\left(1-\gamma_{5}\right) e W_{\mu}^{-}+h . c .+g \sin \theta_{W} \bar{e} \gamma^{\mu} e A_{\mu} \\
& -\frac{g}{4 \cos \theta_{W}} \bar{\nu} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu Z_{\mu}+\frac{g}{4 \cos \theta_{W}} \bar{e}\left[\gamma^{\mu}\left(1-\gamma_{5}\right)-4 \sin ^{2} \theta_{W} \gamma^{\mu}\right] e Z_{\mu}
\end{aligned}
$$

parameters of the Standard Model

\checkmark free parameters of the $S U(2)_{L} \times U(1)_{Y}$ part of the SM with one generation of leptons:

- the two gauge couplings g and g^{\prime}
- the two parameters μ and λ of the scalar potential $V(\phi)$
- the Yukawa couplings G_{f}
- more convenient: replace by parameters
which can be measured accurately, e.g.

$$
\left\{g, g^{\prime}, \boldsymbol{\mu}, \boldsymbol{\lambda}, \boldsymbol{G}_{f}\right\} \rightarrow\left\{e, \sin \theta_{W}, m_{H}, m_{W}, m_{f}\right\}
$$

these are related to original parameters via

$$
\begin{gathered}
\tan \theta_{W}=\frac{g^{\prime}}{g}, e=g \sin \theta_{W}, m_{H}=\sqrt{2} \mu, \\
m_{W}=\frac{g}{2 \sqrt{\lambda}}, m_{f}=G_{f} \frac{\mu}{\sqrt{\lambda}}
\end{gathered}
$$

parameters of the Standard Model

\checkmark more convenient: replace by parameters which can be measured accurately, e.g.

$$
\left\{g, g^{\prime}, \mu, \lambda, G_{f}\right\} \rightarrow\left\{e, \sin \theta_{W}, m_{H}, m_{W}, m_{f}\right\}
$$

- other parameters are predictions,
e.g. the Z-boson mass m_{Z} or the Fermi constant G_{F} :

$$
m_{Z}=\frac{m_{W}}{\cos \theta_{W}} \quad \text { and } \quad G_{F}=\frac{e^{2}}{4 \sqrt{2} m_{W}^{2} \sin ^{2} \theta_{W}}
$$

\checkmark full SM with three generations: additional parameters are needed for fermion masses and mixing angles between the generations

the full picture (?)

global electroweak fit

precision tests of the Standard Model

powerful tool for testing the SM to high accuracy:
precision electroweak measurements
very accurate results provided by:
\uparrow LEP (Large Electron Positron collider at CERN),

> run 1: $\sqrt{s}=m_{Z}$ run 2: $\sqrt{s} \lesssim 200 \mathrm{GeV}$
\checkmark SLC (Standford Linear Collider, $\sqrt{s}=m_{Z}$)
allow to test the SM at the percent level!
to achieve this precision need to
include quantum corrections in predictions
extra gain: indirect sensitivity to energy scales beyond direct reach

the theorist's task

provide precise predictions for experimentally accessible observables as pre-requisites for

- accurate determination of physics parameters (couplings, masses, ...)
\uparrow discovery of new particles and physics scenarios

hard scattering: the perturbative approach

high energies: (ideally) series expansion in coupling parameter

$$
\left.\sigma=\sum_{n=n_{0}}^{N} \alpha^{n} \sigma^{(n)}+\mathcal{O}\left(\alpha^{N+1}\right) \quad\right\rangle \operatorname{mi}\langle+\rangle \min +\ldots
$$

truncation at fixed order $\boldsymbol{\alpha}^{\boldsymbol{N}}(\rightarrow \mathrm{LO}, \mathrm{NLO}, \ldots)$
order N provided by theoretician ("\# of loops") depends on:
\checkmark complexity of the problem

- kinematic properties of the reaction
- multiplicity of the final state ("\# of legs")
- mass scales of involved particles
-...
\uparrow accuracy which can be achieved in experiment
\uparrow computational skills of the perturbationist

renormalizability of the SM

Gerardus 't Hooft

Martinus J. G. Veltman

The Nobel Price in Physics 1999: "for elucidating the quantum structure of electroweak interactions in physics"

renormalizability of the SM

the Standard Model is renormalizable
\rightarrow observables can be calculated from few input parameters, in principle to arbitrarily high precision
but:
\downarrow radiative corrections sensitive to highest momentum scales

- large corrections
\uparrow sensitive to unknown physics

renormalizability of the SM

but:
\checkmark radiative corrections sensitive to highest momentum scales
\uparrow large corrections
\uparrow sensitive to unknown physics

renormalizability of the SM

x problem: radiative corrections are large
\checkmark solution: absorb large corrections (here $\sim \ln \Lambda_{\text {cut }}$) into redefinition of the parameters of the theory:

- physical couplings: $\quad g=g_{0}+\delta g$
- physical mass: $\quad m=m_{0}+\delta m$
$g_{0}, m_{0} \ldots$ "bare" parameters of \mathcal{L}
$\delta g, \delta m \ldots$ contain the large corrections $\sim \ln \Lambda_{\text {cut }}$
renormalizable theories: all UV divergences can be absored into the redefinition of couplings and masses
\rightarrow physical observables are independent of $\Lambda_{\text {cut }}$

indirect searches

quantum corrections to precision observables \rightarrow indirect access to high mass scales
e.g., the \boldsymbol{W} boson mass:

calculate m_{W} from m_{Z} and G_{F} including quantum corrections:

$$
\frac{m_{W}^{2}}{m_{Z}^{2}}\left(1-\frac{m_{W}^{2}}{m_{Z}^{2}}\right)=\frac{\pi \alpha}{\sqrt{2} G_{F} m_{Z}^{2}(1-\Delta r)}
$$

with quantum corrections $\Delta r=\Delta \alpha-\cot \theta_{W} \Delta \rho^{\text {top }}+\Delta r^{\text {Higgs }}+\ldots$
leading top-quark contribution: quadratic in $m_{\text {top }}$:

$$
\Delta \rho^{\mathrm{top}}=\frac{3 G_{F} m_{\mathrm{top}}^{2}}{8 \pi^{2} \sqrt{2}}+\ldots
$$

$$
\Delta r^{\mathrm{Higgs}}=\frac{G_{F} m_{W}^{2}}{8 \pi^{2} \sqrt{2}} \frac{1+9 \sin ^{2} \theta_{W}}{3 \cos ^{2} \theta_{W}} \ln \left(\frac{m_{H}^{2}}{m_{W}^{2}}\right)+\ldots
$$

\rightarrow only logarithmic dependence on m_{H} :

indirect searches for the top quark

indirect searches for top quark work rather well (recall: top mass enters precision observables quadratically)
historically (around 2000):
direct observation: $\quad m_{\text {top }}=172.7 \pm 2.9 \mathrm{GeV}$ (CDF and D0)
indirect observation: $m_{\text {top }}=179.4 \pm 11 \mathrm{GeV}$ (LEP and SLD)
more recent (PDG 2015): best limits come from the LHC
ATLAS: $m_{\text {top }}=172.99 \pm 0.48$ (stat.) ± 0.78 (syst.) GeV
CMS: $\quad m_{\text {top }}=172.32 \pm 0.25$ (stat.) ± 0.59 (syst.) GeV

indirect searches for the Higgs boson

indirect searches for the Higgs boson are harder because of logarithmic Higgs mass dependence

LEPEWWG (2005)

data consistent with SM; fits to EW data $\rightarrow m_{H}<219 \mathrm{GeV}$

indirect searches for the Higgs boson

indirect searches for the Higgs boson are harder because of logarithmic Higgs mass dependence

direct searches at Tevatron exclude large parameter range!

the hierarchy problem

Higgs boson is light and weakly interacting;
but why is $m_{H} \ll M_{\text {Planck }}$?
quantum corrections to Higgs boson mass
are quadratically divergent:

$$
\delta m_{H}^{2} \sim \frac{3 G_{F}}{\sqrt{2} \pi^{2}} m_{\mathrm{top}}^{2} \Lambda^{2}
$$

$\Lambda \ldots$ cutoff scale up to which the SM is valid (need Λ of $\mathcal{O}(1 \mathrm{TeV})$ to avoid unnaturally large corrections)

the hierarchy problem

$$
\delta m_{H}^{2} \sim \frac{3 G_{F}}{\sqrt{2} \pi^{2}} m_{\mathrm{top}}^{2} \Lambda^{2}
$$

$\Lambda \ldots$ cutoff scale up to which the SM is valid (need Λ of $\mathcal{O}(1 \mathrm{TeV})$ to avoid unnaturally large corrections)
need new physics to stabilize the hierarchy $M_{\text {Planck }} \gg m_{H}$ which decouples from electroweak precision tests
some popular candidates:
\checkmark supersymmetry, extra dimensions
x techicolor, little Higgs models

theoretical bounds from perturbative unitarity

can we employ the requirement of unitarity in processes with massive gauge bosons to constrain the weak sector?

most sensitive to the mechanism of electroweak symmetry breaking:
longitudinal modes of the $\boldsymbol{W}^{ \pm}$and \boldsymbol{Z} bosons
\rightarrow consider longitudinal gauge boson scattering:

$$
W_{L}^{+} \boldsymbol{W}_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}
$$

theoretical bounds from perturbative unitarity

$$
W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-} \quad \text { with } \varepsilon_{L}^{\mu} \sim \frac{\sqrt{s}}{M_{W}}
$$

growth violates unitarity \rightarrow need:

Higgs with $M_{H} \lesssim 1 \mathrm{TeV}$ or new physics at TeV scale

needed: high-energy hadron colliders

Superconducting Super Collider (SSC)

location: Texas, USA design energy: 40 TeV

Tevatron

location: Fermilab, USA energy: 2 TeV

Large Hadron Collider (LHC)

location: CERN, Switzerland design energy: 14 TeV

needed: high-energy hadron colliders

the first hadron collider at the Terascale

the Tevatron at Fermilab:
high energy synchrotron
with proton-anti-proton collisions
at c.m.s. energy

$$
\sqrt{S} \simeq 2 \mathrm{TeV}
$$

combined experimental bounds on the Higgs mass

Search for the Higgs Particle

Status as of July $2010 \quad 95 \%$ confidence level

the world's largest hadron collider ...

. . . the Large Hadron Collider (LHC) at CERN

the world's largest hadron collider ...

...smashes proton or heavy-ion beams

the world's largest hadron collider ...

... and its four major experiments ...

how to calculate cross sections for the LHC

\star high energies \rightarrow can calculate QCD processes perturbatively

- EW coupling: sufficiently small for perturbation theory
\star Feynman rules \rightarrow in principle calculate any process at any order in perturbation theory
- but: perturbative calculations for quarks and gluons

have to connect
partons \leftrightarrow protons

confinement

quarks and gluons appear only in bound states (hadrons):

$$
\left.\mid \text { meson }\rangle \sim \delta_{i j}\left|q_{i} \bar{q}_{j}^{\prime}\right\rangle, \quad \mid \text { baryon }\right\rangle \sim \epsilon_{i j k}\left|\boldsymbol{q}_{i} \boldsymbol{q}_{j}^{\prime} \boldsymbol{q}_{k}^{\prime \prime}\right\rangle
$$

\rightarrow hadrons are color singlets!

- quarks linked by "spring" that breaks when they move apart
\checkmark at small distances
perturbation theory breaks down
no rigorous theoretical understanding of confinement as of yet

asymptotic freedom

prerequisite for perturbative calculations in QCD: strong coupling α_{s} depends on energy scale Q

$$
\alpha_{s}\left(Q^{2}\right)=\frac{\alpha_{s}\left(Q_{0}^{2}\right)}{1+\frac{33-2 N_{f}}{12} \frac{\alpha_{s}\left(Q_{0}^{2}\right)}{\pi} \ln \frac{Q^{2}}{Q_{0}^{2}}}
$$

$Q_{0} \ldots$ reference scale
$N_{f} \ldots$. of flavors

increasing energy scale: coupling decreases = "asymptotic freedom"
at high scales: $\alpha_{s}<1 \rightarrow$ perturbation theory applicable [consequence of non-Abelian interaction, contrary to $U(1)$ of QED]

hadron-hadron collision

$$
d\left(P_{A}\right)=P_{a, b} \int_{0}^{c} d x_{a} \int_{0}^{c} d x_{b} f_{a}
$$

hadron-hadron collision

$$
p\left(P_{A}\right)=P_{a}
$$

hadron-hadron collision

$$
\begin{array}{r}
d \sigma^{p p \rightarrow X}=\sum_{a, b} \int_{0}^{1} d x_{a} \int_{0}^{1} d x_{b} f_{a}\left(x_{a}, \mu_{F}\right) f_{b}\left(x_{b}, \mu_{F}\right) \\
\times d \hat{\sigma}^{a b \rightarrow X}\left(x_{a} P_{A}, x_{b} P_{B}, \mu_{F}, \mu_{R}\right)
\end{array}
$$

hadron-hadron collision

$$
\begin{aligned}
& p\left(P_{A}\right) \begin{array}{c}
\text { energy available for } \\
\text { hard scattering: } \\
\sqrt{\hat{s}}=\sqrt{x_{a} x_{b} S}
\end{array} \\
& d \sigma^{p p \rightarrow X}=\sum_{a, b} \int_{0}^{1} d x_{a} \int_{0}^{1} d x_{b} f_{a}\left(x_{a}, \mu_{F}\right) f_{b}\left(x_{b}, \mu_{F}\right) \\
& \times d \hat{\sigma}^{a b \rightarrow X}\left(x_{a} P_{A}, x_{b} P_{B}, \mu_{F}, \mu_{R}\right)
\end{aligned}
$$

factorization

foundation for predictive power of pQCD:

long-distance structure of hadrons
can be separated from hard parton scattering at specific scale $\boldsymbol{\mu}_{\boldsymbol{F}}$

$$
\begin{aligned}
& d \sigma^{p p \rightarrow X}=\sum_{a, b} \int_{0}^{1} d x_{a} \int_{0}^{1} d x_{b} f_{a}\left(x_{a}, \mu_{F}\right) f_{b}\left(x_{b}, \mu_{F}\right) \\
& \times d \hat{\sigma}^{a b \rightarrow X}\left(x_{a} P_{A}, x_{b} P_{B}, \mu_{F}, \mu_{R}\right)
\end{aligned}
$$

parton distribution functions

\checkmark extracted from experiment at a scale μ_{0}, e.g.:

$$
f_{q}\left(x, \mu_{0}\right) \ldots \text { DIS: } \mathrm{e}^{-} \mathrm{p} \rightarrow \mathrm{e}^{-} \mathrm{X}
$$ (CTEQ, MSTW, NNPDF ...)

\checkmark further constraints provided by lattice QCD
\uparrow universal: PDFs do not depend on reaction / experiment
$\uparrow \mu$ dependence predicted by perturbative QCD:

$$
\mu^{2} \frac{\partial}{\partial \mu^{2}}\binom{f_{q}(x, \mu)}{f_{g}(x, \mu)}=\int_{x}^{1} \frac{d z}{z}\left(\begin{array}{ll}
\mathcal{P}_{q q} & \mathcal{P}_{q g} \\
\mathcal{P}_{g q} & \mathcal{P}_{g g}
\end{array}\right)_{\left(z, \alpha_{s}(\mu)\right)} \cdot\binom{f_{q}}{f_{g}}\left(\frac{x}{z}, \mu\right)
$$

DGLAP equations

$$
\mu^{2} \frac{\partial f_{i}(x, \mu)}{\partial \mu^{2}}=\sum_{j} \int_{x}^{1} \frac{d z}{z} P_{i j}(z) f_{j}\left(\frac{x}{z}, \mu\right)
$$

[Altarelli, Parisi; Gribov, Lipatov, Dokshitzer (1977)]
\downarrow system of coupled integro-differential equations
\checkmark splitting functions can be computed perturbatively:

$$
P_{i j}(z)=\frac{\alpha_{s}}{2 \pi} P_{i j}^{(0)}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} P_{i j}^{(1)}+\ldots
$$

at leading order:
j

$$
\begin{aligned}
& P_{q g}^{(0)}=\frac{1}{2}\left[z^{2}+(1-z)^{2}\right] \\
& P_{g q}^{(0)}=C_{F} \frac{1+(1-z)^{2}}{z} ; P_{q q}^{(0)} \text { and } P_{g g}^{(0)} \ldots \text { more complicated }
\end{aligned}
$$

DGLAP evolution

[Salam (2011)]

start from pure quark input \rightarrow evolution generates gluon

start from pure gluon input
\rightarrow evolution generates quarks / anti-quarks

DGLAP evolution confronted with data

[Salam (2011)]

pure quark input does not describe high- Q^{2} data on $F_{2}^{p}\left(x, Q^{2}\right)$ structure function well
(CTEQ includes significant low-scale gluon component)

parton luminosities

total hadronic cross section σ can be expressed as

$$
\sigma(s)=\sum_{a, b} \int_{\tau_{0}}^{1} \frac{d \tau}{\tau}\left[\frac{\tau}{\hat{s}} \frac{d \mathcal{L}_{a b}}{d \tau}\right] \hat{s} \hat{\sigma}_{a b}(\hat{s}), \quad \text { with } \tau=x_{a} x_{b}=\hat{s} / s
$$

using the differential parton luminosity
$\tau \frac{d \mathcal{L}_{a b}}{d \tau}=\int_{0}^{1} d x d y\left[x f_{a}\left(x, \mu_{F}\right) y f_{b}\left(y, \mu_{F}\right)+(x \leftrightarrow y)\right] \delta(\tau-x y)$
\rightarrow helpful to estimate production rate due to specific partonic channels at hadron collider

PDF uncertainties

[PDF4LHC 2015]

PDF uncertainties

[PDF4LHC 2015]

newer PDF sets CT14, NNPDF3.0, MMHT14 exhibit better consistency

hadron-hadron collision

$$
d\left(P_{A}\right)=P_{a, b} \int_{0}^{c} d x_{a} \int_{0}^{c} d x_{b} f_{a}
$$

recipe: calculation of partonic cross sections

$$
d \hat{\sigma}_{a b \rightarrow \ldots} \sim \bar{\sum}|\mathcal{M}|_{a b \rightarrow c d \ldots}^{2} \mathcal{F}_{\text {cuts }}\left(p_{f}\right) d P S
$$

\uparrow calculation of scattering amplitude squared $|\mathcal{M}|^{2}$ at desired perturbative order (in $\boldsymbol{\alpha}_{s}$ or $\boldsymbol{\alpha}$)
\checkmark proper treatment of ultraviolet and infrared divergences:

- regularization
- renormalization
- subtraction of infrared singularities
- phase space integration and convolution with PDFs

the leading order

need to compute scattering amplitude squared, e.g.:

(here: only two tree-level Feynman diagrams occur for $\boldsymbol{q} \boldsymbol{q} \rightarrow \boldsymbol{q} \boldsymbol{q}$)
matrix elements can be computed numerically using helicity amplitude techniques

evaluation of Feynman diagrams

need to evaluate
$\sum_{\text {helicities }}|\mathcal{M}|^{2}=\sum_{\text {helicities }}\left(\mathcal{M}_{1}+\mathcal{M}_{2}+\mathcal{M}_{3}+\ldots\right) \cdot\left(\mathcal{M}_{1}+\mathcal{M}_{2}+\mathcal{M}_{3}+\ldots\right)^{\star}$
amplitude techniques:
evaluate $\mathcal{M}=\left(\mathcal{M}_{1}+\mathcal{M}_{\mathbf{2}}+\mathcal{M}_{\mathbf{3}}+\ldots\right)$ first numerically for specific helicities of external particles, then square it!
fast numerical programs and many implementations available, e.g.
approach proposed by Hagiwara, Zeppenfeld (1986,1989):
implemented in HELAS (Murayama et al., 1992)
employed by MadGraph (Stelzer et al., 1994ff)

amplitude techniques

basic approach of HELAS/MadGraph:
\uparrow at each phase space point

\rightarrow take numerical values of external 4-momenta p_{i}^{μ}, k_{i}^{μ}
\checkmark polarization vectors $\varepsilon^{\mu}(\boldsymbol{k}, \boldsymbol{\lambda})$ and spinors $u(p, \sigma)$
\Longleftrightarrow complex 4-arrays

- products like

$$
\frac{1}{p-\not k-m} \notin(k, \lambda) u(p, \sigma)
$$

of momenta, polarization vectors, spinors, and γ^{μ}-matrices are computed via numerical 4×4 matrix multiplication
perfect for LO amplitudes (all building blocks and results are completely finite)

the leading order

several public programs on the market for automated generation of hard scattering matrix elements at tree level in the Standard Model:

Alpgen, CompHep, Helac, MadGraph, Sherpa, ...
extra features:
physics beyond the Standard Model
\checkmark facilities for phase-space integration
\checkmark analysis tools
\checkmark interfaces to parton-shower generators
-...

need for higher-order corrections

- more reliable information:
- higher order corrections often large
- closer to experiment (more realistic final state)
- test of methods and underlying theory
\checkmark search for physics beyond the Standard Model:
since deviations of nature from SM small:
- need very precise predictions for signal to spot effects of new physics
- requires thorough understanding of SM backgrounds
the next-to-leading order:
- real emission
- virtual corrections

next-to-leading-order (NLO) calculation: ingredients

example process: $\boldsymbol{q q} \rightarrow \boldsymbol{q q}$:

the leading order:

$$
d \hat{\sigma}_{\mathrm{LO}} \sim\left|\mathcal{M}_{\mathrm{LO}}\right|^{2} \sim \mathcal{O}\left(\alpha_{s}^{2}\right)
$$

real-emission contributions:

diagrams with emission of one extra parton
$d \hat{\sigma}_{\mathrm{R}} \sim\left|\mathcal{M}_{\text {real }}\right|^{2} \sim \mathcal{O}\left(\alpha_{s}^{3}\right)$
virtual corrections:

loop diagrams yield interference contribution of wanted order
$d \hat{\sigma}_{\mathrm{V}} \sim 2 \operatorname{Re}\left[\mathcal{M}_{\mathrm{virt}} \mathcal{M}_{\mathrm{LO}}^{\star}\right] \sim \mathcal{O}\left(\alpha_{s}^{3}\right)$

some complications at NLO

obvious: meaningful observables

theoretical prediction: finite result
but: how is finite result obtained in practice?
generally: perturbative calculation beyond LO
\rightarrow singularities encountered in intermediate steps
even though they will eventually cancel, divergencies need to be treated properly throughout!

regularization

regularization needed to manifest singularities in intermediate steps of a calculation
various prescriptions on the market:

- cut-off regularization
- mass regularization
\uparrow dimensional regularization
-...
result for a meaningful observable:
independent of regulator and regularization prescription

regularization schemes

\checkmark momentum cut-off:
can be used to regulate UV and / or
IR divergent loop integrals, schematically:

$$
\int_{0}^{\infty} \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{\left(q^{2}\right)^{n}} \rightarrow \int_{\Lambda_{0}}^{\Lambda_{\infty}} \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{\left(q^{2}\right)^{n}}
$$

\checkmark simple to implement
X violates translation and gauge invariance

regularization schemes

- mass regularization:
introduce auxiliary mass m for massless gauge bosons

$$
\text { e.g., photon: propagator } \frac{1}{q^{2}+i \delta} \rightarrow \frac{1}{q^{2}-m^{2}+i \delta}
$$

X calculations more complicated due to additional mass scale
x problems with gauge invariance in Non-Abelian case (QCD)
\checkmark frequently used for QED calculations

regularization schemes

many other schemes are on the market, e.g.:

- Pauli Villars regularization
- analytical regularization
- lattice regularization
-...
x can be problematic if Lorentz invariance or gauge symmetries are to be preserved
\checkmark can be useful for specific applications

regularization

\checkmark dimensional regularization:

 dimension of space-time $d=4 \rightarrow d=4-2 \varepsilon$$$
\int_{0}^{\infty} \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{\left(q^{2}\right)^{n}} \rightarrow \int_{0}^{\infty} \frac{d^{d} q}{(2 \pi)^{d}} \frac{1}{\left(q^{2}\right)^{n}}
$$

$\varepsilon>0 \ldots$ UV regulator, $\varepsilon<0 \ldots$ IR regulator
divergencies \rightarrow poles in ε

- preserves Lorentz and gauge invariance
- problem: have to perform Dirac algebra in d dimensions; $\varepsilon^{\mu \nu \rho \sigma}$ and γ^{5} a priori undefined in $d \neq 4$
still: THE method of choice in QCD

dimensional regularization

different (but finally equivalent) implementations:

- "genuine" dimensional regularization: polarization vectors/spinors of external particles and internal loop momenta d-dimensional
- dimensional reduction:
polarization vectors/spinors of external particles
4-dimensional,
internal loop momenta \boldsymbol{d}-dimensional
well-defined transformation rules between different schemes
our method of choice: dimensional reduction

dimensional regularization: an example

let's calculate the quark selfenergy in $d \operatorname{dim}(\overline{\mathrm{MS}}$ scheme):

$$
=\quad \Sigma_{i l}^{b}(p)
$$

(un-renormalized)
compute color factor $\sum_{a, j} \boldsymbol{T}_{i j}^{a} \boldsymbol{T}_{j l}^{a}=\boldsymbol{C}_{\boldsymbol{F}} \delta_{i l}$ and replace coupling by dimensional one $\boldsymbol{g}_{s}^{2} \rightarrow\left(\frac{e^{\gamma}}{4 \pi} \boldsymbol{\mu}^{2}\right)^{\varepsilon} \boldsymbol{g}_{s}^{2}$

$$
\Sigma_{i l}^{b}(p)=-g_{s}^{2} \mu^{2 \varepsilon} C_{F} \delta_{i l} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\gamma_{\mu}(\not p-\not k) \gamma^{\mu}}{k^{2}(k-p)^{2}}=-i \not p C_{F} \delta_{i l} \Sigma^{b}\left(p^{2}\right)
$$

quark selfenergy

for evaluation of Σ^{b} we need scalar integral

$$
\begin{aligned}
\tilde{B}_{0}= & \frac{1}{i} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{k^{2}(k-p)^{2}}=\frac{1}{16 \pi^{2}}\left(\frac{-p^{2}}{4 \pi}\right)^{-\varepsilon} \Gamma(1+\varepsilon)\left(2+\frac{1}{\varepsilon}\right) \\
& \text { and find after some algebra } \\
& \text { (details on computation of loop integrals: see below) }
\end{aligned}
$$

$$
\Sigma^{b}\left(p^{2}\right)=-\frac{\alpha_{s}}{4 \pi}\left(\frac{\mu^{2}}{-p^{2}}\right)^{\varepsilon}\left(1+\frac{1}{\varepsilon}\right)
$$

UV pole! remove by renormalization

quark selfenergy

renormalized selfenergy for off-shell quarks:

$$
\begin{aligned}
\Sigma\left(p^{2} \neq 0\right) & =-\frac{\alpha_{s}}{4 \pi}\left[\left(\frac{\mu^{2}}{-p^{2}}\right)^{\varepsilon}\left(1+\frac{1}{\varepsilon}\right)-\frac{1}{\varepsilon}\right] \\
& =-\frac{\alpha_{s}}{4 \pi}\left[1+\ln \left(\frac{\mu^{2}}{-p^{2}}\right)+\mathcal{O}(\varepsilon)\right]
\end{aligned}
$$

note:

- result finite as $\varepsilon \rightarrow 0$
- introduced arbitrary mass scale μ

cancelation of divergencies at NLO

collinear singularities
\downarrow
factorization
at scale μ_{f}

\downarrow
factorization
at scale μ_{f}
 virtual contributions to well-defined observable:
finite

cancelation of divergencies at NLO

intermediate
steps: regularize
all divergencies by
$d \rightarrow 4-2 \varepsilon$

collinear singularities
$\stackrel{\downarrow}{\text { factorization }}$
at scale μ_{f} 1
sum of all real and virtual contributions to well-defined observable:
finite for $\varepsilon \rightarrow 0$

cancelation of divergencies at NLO

cancelation of ε poles can be performed explicitly in analytical calculation, but how can divergencies be handled in numerical calculation?

finite for $\varepsilon \rightarrow 0$

cancelation of divergencies at NLO

typical NLO QCD calculation up to 1990ies:

- compute $\left|\mathcal{M}_{\text {real }}\right|^{2}$ and $2 \operatorname{Re}\left[\mathcal{M}_{V} \mathcal{M}_{B}^{\star}\right]$ analytically in d dimensions
- perform phase-space integration analytically in \boldsymbol{d} dim (considering acceptance cuts etc.)
- cancel matching poles in real emission and virtual contributions
- set $\varepsilon \rightarrow 0$ and convolute $d \hat{\sigma}$ with PDFs numerically for $d=4$

cancelation of divergencies at NLO

procedure perfect for processes with only a few particles and minimal set of cuts (e.g., total cross sections):

- poles cancelled analytically
\rightarrow no delicate numerical cancelations needed
- resulting code fast and efficient
- procedure still used, e.g., for global PDF analyses

but:

- complete calculation has to be performed analytically in d dim (Dirac algebra can become very complicated; γ^{5} problem ...)
- PS integration can be done explicitly for "simple" reactions only
- implementation of cuts for realistic distributions hard

cancelation of divergencies at NLO

basic idea of modern approaches:

- treat only minimal part of full calculation analytically
(utilize universality of pieces containing divergencies)
- finite contributions are treated numerically
two types of algorithm to handle divergencies numerically:
- phase space slicing
- subtraction method
actual details vary depending on specific implementation/variant, but basic concepts are general

Monte Carlo methods: a comparison

phase space slicing and subtraction techniques are in priciple equivalent, but are they in practice?

taken from Bredenstein, Denner, Dittmaier, Weber,
" Precise predictions for the Higgs-boson decay
$\boldsymbol{H} \rightarrow \boldsymbol{W} W / Z Z \rightarrow 4$ leptons", hep-ph/0604011

phase space slicing

\checkmark introduce cut parameter δ_{S} to split phase space into soft and hard regions that are evaluated separately
\checkmark after phase-space integration: $\ln \delta_{S}$ dependence in virtual and real emission contributions cancels numerically

- disadvantage: perform integration over potentially large terms first, cancel large contributions afterwards
\rightarrow procedure can cause numerical problems
see, e.g., Harris, Owens, hep-ph/0102128

subtraction methods

introduce local counterterm which
cancels divergencies before integration

numerically stable
\checkmark first applied in $e^{+} e^{-} \rightarrow 3$ jets
in process-specific manner by
Ellis, Ross, Terrano (1981)
\uparrow extended to the general case by

- Frixione, Kunszt, Signer (1995)
- Catani, Seymour (1996)
(later extensions/refinements exist)

dipole subtraction: a simple example

the most transparent case:
no identified hadrons in process, e.g. $e^{+} e^{-} \rightarrow 2$ jets:
m ... \# of final state partons

$$
\sigma^{L O}=\int_{m} d \sigma^{B}
$$

finite!
no regularization needed
calculate in $d=4$ dimensions
m-parton
phase space
integral

Born x-sec for $e^{+} e^{-} \rightarrow q \bar{q}$
($m=2$)

dipole subtraction: NLO ingredients

real emission contributions $m+1$ parton kinematics

virtual corrections m parton kinematics

$$
\sigma^{N L O}=\int_{m+1} d \sigma^{R}+\int_{m} d \sigma^{V}
$$

regularize in $d=4-2 \varepsilon$ dim

dipole subtraction: counterterms

introduce local counterterm $\boldsymbol{d} \boldsymbol{\sigma}^{A}$ with same singularity structure as $d \sigma^{R}$:

$$
\sigma^{N L O}=\int_{m+1} \underbrace{\left[d \sigma^{R}-d \sigma^{A}\right]}_{\text {finite }}+\int_{m+1} d \sigma^{A}+\int_{m} d \sigma^{V}
$$

can safely set $\varepsilon \rightarrow 0$
perform integral numerically in four dimension

singularity structure

$$
\left|\mathcal{M}_{m+1}\left(Q ; p_{1}, \ldots, p_{i}, \ldots, p_{j}, \ldots, p_{m+1}\right)\right|^{2}
$$

soft region:

$$
p_{j}=\lambda q, \lambda \rightarrow 0
$$

$$
\left|\mathcal{M}_{m+1}\right|^{2} \sim \frac{1}{\lambda^{2}}
$$

e. g.:

collinear region:

$$
p_{j}=\frac{(1-z)}{z} p_{i}
$$

$$
\left|\mathcal{M}_{m+1}\right|^{2} \sim \frac{1}{p_{i} p_{j}}
$$

universal structure: for each singular configuration

$$
\left|\mathcal{M}_{m+1}\right|^{2} \rightarrow\left|\mathcal{M}_{m}\right|^{2} \otimes \mathbf{V}_{i j, k}
$$

dipole subtraction:counterterms

$$
\sigma^{N L O}=\left.\int_{m+1}\left[d \sigma^{R}-d \sigma^{A}\right]\right|_{\varepsilon=0}+\int_{m} d \sigma^{V}+\int_{m+1} d \sigma^{A}
$$

integrate over one-parton PS analytically explicitly cancel poles \& then set $\varepsilon \rightarrow \mathbf{0}$

$$
\sigma^{N L O}=\int_{m+1}\left[d \sigma_{\varepsilon=0}^{R}-d \sigma_{\varepsilon=0}^{A}\right]+\int_{m}\left[d \sigma^{V}+\int_{1} d \sigma^{A}\right]_{\varepsilon=0}
$$

dipole subtraction: the counterterm

wish list:

- matches singular behavior of $d \sigma^{R}$ exactly in d dim
- convenient for Monte Carlo integration
- exactly integrable analytically over one-parton PS in d dim
- for given process: independent of specific observable
- extra feature: universal structure

dipole subtraction: the counterterm

wish list:

- matches singular behavior of $d \sigma^{R}$ exactly in d dim
- convenient for Monte Carlo integration
- exactly integrable analytically over one-parton PS in d dim
- for given process: independent of specific observable
- extra feature: universal structure
a solution: dipole subtraction method
[Catani and Seymour, hep-ph/9605323]

$$
d \sigma^{A}=\sum_{\text {dipoles }} d \sigma^{B} \otimes d V_{\text {dipole }}
$$

(other approaches: Ellis et al.; Kunszt and Soper; Dittmaier, ...)

dipole subtraction: the counterterm

$$
d \sigma^{A}=\sum_{\text {dipoles }} d \sigma^{B} \otimes d V_{\text {dipole }}
$$

PS convolution \& color/spin summation
dipoles for all $(m+1)$ configurations
corresponding to given
m-parton state

real emission contributions

for the computation of $d \sigma^{R}$ we need numerical value for

$$
\left|\mathcal{M}_{R}\right|^{2}=\mid \text { Dman }^{\text {toror }}+\left.\cdots \cdot\right|^{2}
$$

at each generated phase space point in 4 dimensions
can apply same (numerical) amplitude techniques as at LO
keep in mind: kinematics different from LO
($2 \rightarrow 3$ instead of $2 \rightarrow 2$ particles)

virtual corrections

... interference of LO diagrams with one-loop graphs

note: Born-type parton kinematics
recall: poles are needed explicitly, finite remainder can be computed in 4 dimensions
requires computation of one-loop scalar and tensor integrals (increasing complexity the more propagators are involved)

loop integrals

in any loop calculation we encounter tensor integrals of type

$$
\begin{gathered}
T_{\mu_{1} \ldots \mu_{m}}\left(p_{1}, \ldots, p_{n} ; m_{1}, \ldots, m_{n}\right) \\
=\int \frac{d^{d} \boldsymbol{q}}{i \pi^{2}} \frac{q_{\mu_{1}} \ldots q_{\mu_{m}}}{D_{1} D_{2} \ldots D_{n}} \\
\text { with }
\end{gathered}
$$

$$
\begin{aligned}
& D_{1}=q^{2}-m_{1}^{2}+i \epsilon \\
& D_{2}=\left(q+p_{1}\right)^{2}-m_{2}^{2}+i \epsilon
\end{aligned}
$$

$$
D_{n}=\left(q+\ldots+p_{n-1}\right)^{2}-m_{n}^{2}+i \epsilon
$$

loop integrals

in any loop calculation we encounter tensor integrals of type

$$
\begin{array}{r}
T_{\mu_{1} \ldots \mu_{m}}\left(p_{1}, \ldots, p_{n} ; m_{1}, \ldots, m_{n}\right) \\
=\int_{0}^{\infty} \frac{d^{d} q}{i \pi^{2}} \frac{q_{\mu_{1}} \ldots q_{\mu_{m}}}{D_{1} D_{2} \ldots D_{n}}
\end{array}
$$

nomenclature:
scalar integrals with

$$
n=1,2,3,4,5, \ldots
$$

and analogous for tensor integrals:

$$
A_{\mu}, B_{\mu}, B_{\mu \nu}, \ldots \quad A_{0}, B_{0}, C_{0}, D_{0}, E_{0}, \ldots
$$

tensor integrals

... calculable from scalar integrals by Passarino-Veltman reduction

$$
T^{\{0, \mu, \mu \nu, \ldots\}}\left(p_{1}, \ldots\right)=\int \frac{d^{d} q}{i \pi^{2}} \frac{\left\{1, q^{\mu}, q^{\mu} q^{\nu}, \ldots\right\}}{D_{1} \ldots D_{n}}
$$

bubbles :

$$
\begin{aligned}
B^{\mu} & =p_{1}^{\mu} B_{1} \\
B^{\mu \nu} & =p_{1}^{\mu} p_{1}^{\nu} B_{21}+g^{\mu \nu} B_{22}
\end{aligned}
$$

triangles :

$$
\begin{aligned}
C^{\mu}= & p_{1}^{\mu} C_{11}+p_{2}^{\mu} C_{12} \\
C^{\mu \nu}= & p_{1}^{\mu} p_{1}^{\nu} C_{21}+p_{2}^{\mu} p_{2}^{\nu} C_{22}+\left\{p_{1} p_{2}\right\}^{\mu \nu} C_{23}+g^{\mu \nu} C_{24} \\
C^{\mu \nu \rho}= & p_{1}^{\mu} p_{1}^{\nu} p_{1}^{\rho} C_{31}+p_{2}^{\mu} p_{2}^{\nu} p_{2}^{\rho} C_{32}+\left\{p_{1} p_{1} p_{2}\right\}^{\mu \nu \rho} C_{33} \\
& +\left\{p_{1} p_{2} p_{2}\right\}^{\mu \nu \rho} C_{34}+\left\{p_{1} g\right\}^{\mu \nu \rho} C_{35}+\left\{p_{2} g\right\}^{\mu \nu \rho} C_{36}
\end{aligned}
$$

tensor integrals

boxes:

$$
\begin{aligned}
D^{\mu}= & p_{1}^{\mu} D_{11}+p_{2}^{\mu} D_{12}+p_{3}^{\mu} D_{13} \\
D^{\mu \nu}= & p_{1}^{\mu} p_{1}^{\nu} D_{21}+p_{2}^{\mu} p_{2}^{\nu} D_{22}+p_{3}^{\mu} p_{3}^{\nu} D_{23}+\left\{p_{1} p_{2}\right\}^{\mu \nu} D_{24} \\
& +\left\{p_{1} p_{3}\right\}^{\mu \nu} D_{25}+\left\{p_{2} p_{3}\right\}^{\mu \nu} D_{26}+g^{\mu \nu} D_{27} \\
D^{\mu \nu \rho}= & p_{1}^{\mu} p_{1}^{\nu} p_{1}^{\rho} D_{31}+p_{2}^{\mu} p_{2}^{\nu} p_{2}^{\rho} D_{32}+p_{3}^{\mu} p_{3}^{\nu} p_{3}^{\rho} D_{33}+\left\{p_{1} p_{1} p_{2}\right\}^{\mu \nu \rho} D_{34} \\
& +\left\{p_{1} p_{1} p_{3}\right\}^{\mu \nu \rho} D_{35}+\left\{p_{1} p_{2} p_{2}\right\}^{\mu \nu \rho} D_{36}+\left\{p_{1} p_{3} p_{3}\right\}^{\mu \nu \rho} D_{37} \\
& +\left\{p_{2} p_{2} p_{3}\right\}^{\mu \nu \rho} D_{38}+\left\{p_{2} p_{3} p_{3}\right\}^{\mu \nu \rho} D_{39}+\left\{p_{1} p_{2} p_{3}\right\}^{\mu \nu \rho} D_{310} \\
& +\left\{p_{1} g\right\}^{\mu \nu \rho} D_{311}+\left\{p_{2} g\right\}^{\mu \nu \rho} D_{312}+\left\{p_{3} g\right\}^{\mu \nu \rho} D_{313}
\end{aligned}
$$

scalar coefficients $\boldsymbol{D}_{i j}$ depend on $\boldsymbol{B}_{0}, \boldsymbol{C}_{\mathbf{0}}, \boldsymbol{D}_{\mathbf{0}}$

tensor integrals

example:

$$
B_{\mu}(p)=p_{\mu} B_{1}(p)=\int \frac{d^{d} q}{i \pi^{2}} \frac{q_{\mu}}{q^{2}(q+p)^{2}}
$$

compute \boldsymbol{B}_{1} by suitable contractions:

$$
\begin{aligned}
p^{\mu} B_{\mu}(p)=p^{2} B_{1}(p) & =\int \frac{d^{d} q}{i \pi^{2}} \frac{p \cdot q}{q^{2}(q+p)^{2}} \\
& =\int \frac{d^{d} q}{i \pi^{2}} \frac{1}{2} \frac{\left[(p+q)^{2}-p^{2}-q^{2}\right]}{q^{2}(q+p)^{2}} \\
& =\frac{1}{2}\left[A(0)-A(0)-p^{2} B_{0}\right] \\
\longrightarrow B_{1}= & -\frac{1}{2} B_{0}
\end{aligned}
$$

tensor reduction methods

newer approaches:
refinements of Passarino-Veltman tensor reduction, e.g.:

- Binoth, Guillet, Heinrich et al. $(1999,2005)$
- Denner, Dittmaier: $(2002,2005)$
- Ellis, Giele, Zanderighi (2005)
alternative: reduction of one-loop amplitudes
to scalar integrals at the integrand level
Ossola, Papadopolous, Pittau (2006)

verification

checks

to ensure reliability of calculation: perform some checks!
\checkmark comparison of LO and real emission amplitudes with alternative code, e.g. MadGraph:
\checkmark compare numerical value of \mathcal{M}_{B} and $\mathcal{M}_{\boldsymbol{R}}$ at every generated phase space point
keep in mind: real-emission corrections to $\boldsymbol{a b} \boldsymbol{X} \boldsymbol{X}$ correspond to
Born amplitudes for $\boldsymbol{a b} \boldsymbol{X}+$ parton
\rightarrow generation with tree-level amplitude generators possible
\checkmark expect agreement at 10^{-10} level

checks

\checkmark check infrared subtraction procedure:

- in soft / collinear limits subtraction terms approach real-emission contributions (non-singular contributions become sub-dominant)
\downarrow generate events in singular regions: expect $d \sigma^{A} / \boldsymbol{d} \sigma^{R} \rightarrow 1$ as two partons become collinear ($\boldsymbol{p}_{\boldsymbol{i}} \cdot \boldsymbol{p}_{\boldsymbol{j}} \rightarrow \mathbf{0}$) or gluon becomes soft ($\left.\boldsymbol{E}_{\boldsymbol{g}} \boldsymbol{\rightarrow} \mathbf{0}\right)$

checks

\checkmark QCD gauge invariance:
easy to check for processes with external gluon, as

$$
\mathcal{M}=\varepsilon_{\mu}\left(p_{g}\right) \mathcal{M}^{\mu}=\left[\varepsilon_{\mu}\left(p_{g}\right)+\boldsymbol{\beta} p_{g \mu}\right] \mathcal{M}^{\mu}
$$

$$
\text { expect } p_{g \mu} \mathcal{M}^{\mu}=0
$$

\checkmark practically: in code for computation of \mathcal{M} replace $\varepsilon_{\mu}\left(p_{g}\right)$ throughout with $p_{g \mu} \rightarrow \mathcal{M}^{\prime}$
\rightarrow expected relation $\left(\mathcal{M}^{\prime}=0\right)$ fulfilled within numerical accuracy of the program

checks

produce two independent codes

require agreement within
numerical accuracy of the two programs

recap: ingredients of an NLO calculation

real-emission contributions:

$$
\begin{aligned}
& \text { diagrams with emission of } \\
& \quad \text { one extra parton } \\
& d \hat{\sigma}_{\mathrm{R}} \sim\left|\mathcal{M}_{\text {real }}\right|^{2} \sim \mathcal{O}\left(\alpha_{s}^{3}\right)
\end{aligned}
$$

virtual corrections:

extra ingredients for handling of divergences:
\star subtraction procedure for infrared divergences

- renormalization of UV divergences

tools for the next-to-leading order in QCD

development of new techniques over last 15 years:
OPP algorithm, generalized unitarity, loops from trees, recursion relations, . . .
starting point of automated approaches to loop calculations

multi-purpose tools for (more or less) automated computation of NLO QCD amplitudes

MadGraph5_aMC@NLO, OpenLoops, GoSam, ...

public loop integral libraries

Carazza, Ellis, Zanderighi $(2007,2016)$

QCDLop

Object-oriented one-loop scalar Feynman integrals framework
A Complex One-Loop Llbrary with Extended Regularizations

frontiers of NLO QCD

exact NLO calculation of multi-leg processes possible
accurate treatment of off-shell configurations (narrow-width approximation no longer necessary)

$$
\begin{aligned}
& \text { example: } t \bar{t} \boldsymbol{H} \text { (with } \boldsymbol{t} \rightarrow \boldsymbol{W} \boldsymbol{b} \rightarrow \boldsymbol{\ell} \boldsymbol{\nu} \boldsymbol{b} \text {) } \\
& \text { [Beenakker et al.; Dawson et al. (2001-03)] } \\
& p \boldsymbol{p} \rightarrow e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu} b \bar{b} \boldsymbol{H} \text { [Denner, Feger (2015)] }
\end{aligned}
$$

$p p \rightarrow e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu} b \bar{b} H$ at NLO QCD

tremendous complexity:
\checkmark amplitudes generated with the help of automated tool RECOLA
\rightarrow loop integrals are evaluated with the COLLIER library
\checkmark bottle neck: efficient phase-space integration
gain: full control on final-state particles
(realistic cuts on leptons and b-jets, access to decay correlations, ...)

$p p \rightarrow e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu} b \bar{b} H$ at NLO QCD

Denner, Feger (2015)

dynamical scale improves perturbative stability

from $p p \rightarrow t \bar{t} j$ to $p p \rightarrow e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu} b \bar{b} j$

Bevilaqua et al. (2015)

full off-shell effects for $p \boldsymbol{p} \rightarrow t \bar{t} j$ using the programs Helac-1Loop, OneLoop, CutTools

- the next-to-next-leading order (NNLO) in QCD
- NLO electroweak (EW) corrections
- mixed QCD-EW effects

more types of perturbative corrections

- fixed order QCD corrections: LO, NLO, NNLO, ...
\uparrow QCD resummations:
- with analytical methods (LL, NLL, NNLL, ...)
- via parton shower Monte Carlo tools
- NLO EW corrections:
generically $\mathcal{O}(\alpha) \sim \mathcal{O}\left(\alpha_{s}^{2}\right)$, but systematic enhancements by
- Sudakov logarithms $\sim \ln ^{n}\left(M_{W} / Q\right)$ at high scales Q
- kinematic effects from photon radiation off leptons
\checkmark consistent combination of various types of corrections

QCD: the next-to-next-to leading order

amazing progress in computation of total cross sections and differential distributions for benchmark processes at NNLO QCD
requiring: two-loop amplitudes for a process \boldsymbol{X}, one-loop amplitudes for the processes $\boldsymbol{X}+1$ parton, tree-level amplitudes for the processes $\boldsymbol{X}+2$ partons
prerequisites:
\checkmark availability of 2-loop master integrals
\checkmark efficient subtraction techniques for infrared divergences
(q_{T} subtraction, N -jettiness, antenna subtraction, sector decomposition, projection to Born)
\checkmark powerful Monte-Carlo programs of high numerical stability

$p p \rightarrow X$ beyond one loop

process	motivation
dijets	PDFs, strong coupling, BSM
\boldsymbol{H}	Higgs couplings
$\boldsymbol{H}+$ jet	Higgs couplings
$\boldsymbol{t} \overline{\boldsymbol{t}}$	top properties, PDFs, BSM
single top	top properties, PDFs
VBF	Higgs couplings
V+jet	PDFs
VH	Higgs couplings
VV	gauge couplings, BSM
HH	Higgs potential

NNLO QCD: new public Monte Carlo programs

brand-new: implementation of several NNLO QCD processes with color-singlet final states in the public Monte Carlo program MCFM
$p \boldsymbol{p} \rightarrow \boldsymbol{H}, \boldsymbol{Z}, \boldsymbol{W}, \boldsymbol{H} \boldsymbol{Z}, \boldsymbol{H} \boldsymbol{W}, \gamma \gamma$ (including decays)
performance: very CPU efficient
(1\% statistical accuracy within a few hours on 8 cores)
Boughezal et al. (05/2016)
in preparation: fully differential NNLO process library MATRIX $p \boldsymbol{p} \rightarrow \boldsymbol{Z}, \boldsymbol{W}, \boldsymbol{H}, \gamma \gamma, \boldsymbol{Z} \boldsymbol{Z}, \boldsymbol{W} \boldsymbol{W}, \boldsymbol{W} \boldsymbol{Z}$ (partly including decays)

Grazzini et al. (release planned for this year)

$p p \rightarrow Z j$ at NNLO QCD

Boughezal et al. (2015)

2015: two completely independent calculations

[Gehrmann-De Ridder et al. \& Boughezal et al.] using different techniques
(antenna vs. N -jettiness subtraction)
\checkmark scale uncertainties reduced
perturbative expansion stable

NNLO QCD corrections are at percent level for inclusive xsec, up to 10% in tails of distributions

$p p \rightarrow \ell^{+} \ell^{-} j$ at NNLO QCD

Gehrmann-De Ridder et al. (2016)

differential predictions at NNLO accuracy soften tension between theory and experiment
optimal: normalize to inclusive Drell-Yan xsec
$(\rightarrow$ minimize impact of experimental uncertainties)

$p p \rightarrow t \bar{t}:$ going differential at NNLO QCD

\checkmark perturbative result stabilized
\uparrow scale dependence reduced
\checkmark improved agreement with data from Tevatron and LHC
future applications:
PDF fits, precision measurements of the top mass, $\boldsymbol{\alpha}_{s}$ extraction

more realistic simulations

parton-shower event generators

parton shower

= computer programs for simulation of collider events down to the level of stable particles:
start from hard scattering process \downarrow
energetic partons radiate soft/collinear daughter partons \rightarrow energy scale decreases
at low scales partons hadronize
most common generators: HERWIG, PYTHIA, SHERPA
include many other useful features, e.g.: hadronization models, simulation of underlying event, multi-parton interactions, generators for hard scattering amplitudes

realistic \& precise predictions

exploit merits of flexible

 Monte Carlo toolsretain NLO accuracy
for hard scattering

realistic \& precise predictions

shower Monte Carlo:

- good description at low transverse momenta $\left(\boldsymbol{p}_{T}\right)$
- events at hadron level

NLO-QCD calculation:

- accurate shapes at high $\boldsymbol{p}_{\boldsymbol{T}}$
- normalization accurate at NLO
- reduced scale dependence

realistic \& precise predictions

POWHEG

realistic \& precise predictions

general presciption for matching parton-level NLO-QCD calculation with parton-shower programs

POWHEG

[Frixione, Nason, Oleari]

> a public multi-purpose tool for "do-it-yourself" implementations:
> the POWHEG-BOX
> http: / /powhegbox.mib. infn.it /
> [Alioli, Nason, Oleari, Re]

parton showers \& NLO-QCD: the POWHEG method

POsitive Weight Hardest Emission Generator
general prescription for matching parton-level NLO-QCD calculations with parton shower programs
[Frixione, Nason, Oleari]
\checkmark generate partonic event with single emission at NLO-QCD
\checkmark all subsequent radiation must be softer than the first one
« event is written on a file in standard Les Houches format
\rightarrow can be processed by default parton shower program (HERWIG, PYTHIA,...)

parton showers \& NLO-QCD: the POWHEG method

POsitive Weight Hardest Emission Generator

general prescription for matching parton-level NLO-QCD calculations with parton shower programs
[Frixione, Nason, Oleari]
\uparrow applicable to any $\boldsymbol{p}_{\boldsymbol{T}}$-ordered parton shower program
\uparrow no double counting of real-emission contributions
\checkmark produces events with positive weights

- tools for "do-it-yourself" implementation publicly available (the POWHEG-BOX)
[Alioli, Nason, Oleari, Re]

NLO cross sections

reminder: differential NLO cross section

shower Monte Carlo cross sections

leading order shower Monte Carlo cross section
first emission
(governed by splitting function P)

Sudakov factor:

$$
\Delta_{t}=\exp \left[-\int d \Phi_{r}^{\prime} \frac{\alpha_{s}}{2 \pi} P\left(z^{\prime}\right) \frac{1}{t^{\prime}} \theta\left(t^{\prime}-t\right)\right]
$$

\ldots. probability for no emission at scale $t^{\prime}>t$

POWHEG cross sections

$$
\bar{B}=\left\{B\left(\Phi_{n}\right)+V\left(\Phi_{n}\right)+\int d \Phi_{r}\left[R\left(\Phi_{n}, \Phi_{r}\right)-C\left(\Phi_{n}, \Phi_{r}\right)\right]\right\}
$$

$d \sigma_{\text {POWHEG }}=d \Phi_{n} \bar{B}\left(\Phi_{n}\right)\left\{\Delta\left(\Phi_{n}, p_{T}^{\text {min }}\right)+\Delta\left(\Phi_{n}, p_{T}\right) \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}, \Phi_{r}\right)} d \Phi_{r}\right\}$

POWHEG "Sudakov" factor:

$$
\Delta\left(\Phi_{n}, p_{T}\right)=\exp \left[-\int d \Phi_{r}^{\prime} \frac{R\left(\Phi_{n}, \Phi_{r}^{\prime}\right)}{B\left(\Phi_{n}\right)} \theta\left(k_{T}\left(\Phi_{n}, \Phi_{r}^{\prime}\right)-p_{T}\right)\right]
$$

the POWHEG cross section

$$
\begin{gathered}
d \sigma_{\mathrm{NLO}}=d \Phi_{n}\left\{B\left(\Phi_{n}\right)+V\left(\Phi_{n}\right)+\left[R\left(\Phi_{n}, \Phi_{r}\right)-C\left(\Phi_{n}, \Phi_{r}\right)\right] d \Phi_{r}\right\} \\
d \sigma_{\mathrm{LO}-\mathrm{SMC}}=d \Phi_{n} B\left(\Phi_{n}\right)\left\{\Delta_{t_{0}}+\Delta_{t} \frac{\alpha_{s}}{2 \pi} P(z) \frac{1}{t} d \Phi_{r}\right\} \\
d \sigma_{\text {POWHEG }}=d \Phi_{n} \bar{B}\left(\Phi_{n}\right)\left\{\Delta\left(\Phi_{n}, p_{T}^{\min }\right)\right. \\
\left.+\Delta\left(\Phi_{n}, p_{T}\right) \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}, \Phi_{r}\right)} d \Phi_{r}\right\}
\end{gathered}
$$

parton showers \& NLO-QCD: the POWHEG-BOX

up-to-date info on the POWHEG-BOX and code download:
http://powhegbox.mib.infn.it/
X user has to supply process-specific quantities:
\uparrow lists of flavor structures for Born and real emission processes

- Born phase space
\star Born amplitudes squared, color-and spin-correlated amplitudes
\uparrow real-emission amplitudes squared
\uparrow finite part of the virtual corrections
\checkmark Born color structure in the limit of a large number of colors
\checkmark all general, process-independent aspects of the matching are provided by the POWHEG-BOX

$p p \rightarrow t \bar{t} H:$ NLO-QCD and parton-shower effects

transverse-momentum distributions shifted to slightly smaller values

Hartanto et al. (2015)

little impact on rapidity distributions

NNLO QCD and parton showers

first steps toward matching of NNLO QCD calculations with parton shower programs:
\checkmark realistic exclusive description of specific final state
\checkmark multi-parton interactions, hadronization, underlying event
\checkmark best possible perturbative accuracy of hard interaction
\checkmark proper modeling of jets (e.g. sub-structure)
immediate impact on LHC physics program
(Higgs, EW precision measurements, ...)

NNLO QCD and parton showers

first steps toward matching of NNLO QCD calculations with parton shower programs:

- POWHEG+MINLO
$\boldsymbol{p} \boldsymbol{p} \boldsymbol{H} \boldsymbol{H}, \boldsymbol{H} \boldsymbol{W}$, Drell-Yan [Zanderighi et al. (2013-16)]
\checkmark UnNLOPS
$p \boldsymbol{p} \boldsymbol{H}$, Drell-Yan [Höche, Li, Prestel (2014)]
\checkmark GENEVA
Drell-Yan [Alioli et al. (2014)]

NNLO QCD and parton showers

\checkmark scale uncertainties reduced from about 10% to 2%

- agreement with NNLO results for inclusive lepton observables
\checkmark jet distributions sensitive to parton-shower effects
\checkmark NNLO+PS tool more flexible than pure NNLO calculation

NNLO+PS accurate description of $p \boldsymbol{p} \rightarrow \boldsymbol{H} \boldsymbol{W}$ using the POWHEG+MINLO approach

EW corrections: why worry?

\star LHC-2 is operating at 13 TeV
\rightarrow reach energy range (more) sensitive to EW effects; EW corrections (δ_{EW}) can reach some 10\%
\checkmark integrated LHC luminosity will reach several $100 \mathrm{fb}^{-1}$
\rightarrow many measurements at few-percent level (= typical size of EW corrections)
\checkmark planned high-precision measurements:
EW parameters, (anomalous) couplings,...
$\rightarrow \delta_{\text {EW }}$ is crucial ingredient

EW corrections: generic features

naive expectation:

$$
\alpha \sim \alpha_{s}^{2} \rightarrow \text { NLO EW } \sim \text { NNLO QCD ? }
$$

but: systematic enhancements possible, e.g.:
\checkmark kinematic effects
\uparrow photon emission \rightarrow mass-singular logs, e.g. $\frac{\alpha}{\pi} \ln \left(\frac{Q}{m_{\mu}}\right)$
\checkmark high energies \rightarrow EW Sudakov logs, e.g. $\frac{\alpha}{\pi} \ln ^{2}\left(\frac{Q}{M_{W}}\right)$

EW corrections: Sudakov logarithms

typical $2 \rightarrow 2$ process: at high energy EW corrections enhanced by large logs

$$
\ln ^{2}\left(\frac{Q^{2}}{M_{W}^{2}}\right) \sim 25 @ \text { energy scale of } 1 \mathrm{TeV}
$$

universal origin of leading EW logs:
mass singularities in virtual corrections related to external lines

soft and collinear virtual gauge bosons: \rightarrow double logs
soft or collinear virtual gauge bosons:
\rightarrow single logs

EW corrections: Sudakov logarithms

compare to QED / QCD:
IR singularities of virtuals canceled by real-emission contributions
electroweak bosons massive
\rightarrow real radiation experimentally distinguishable
non-Abelian charges of W, Z are open
\rightarrow Bloch-Nordsieck theorem not applicable
M. Ciafaloni, P. Ciafaloni, Comelli; Beenakker, Werthenbach;

Denner, Pozzorini; Kühn et al., Baur; . . .

impact of EW Sudakov logarithms

Kühr, Scharf, Uwer (2013)

$p p \rightarrow t \bar{t}$ at $13 \mathrm{TeV}:$
tails of distributions receive large corrections!

EW effects in PDFs

consistent calculation at NLO EW requires PDFs including $\mathcal{O}(\alpha)$ corrections and new photon PDF

MRST2004QED: first PDF set with $\mathcal{O}(\boldsymbol{\alpha})$ corrections

NNPDF2.3QED (2013): NNPDF set with $\mathcal{O}(\boldsymbol{\alpha})$ corrections

- 2013: best PDF prediction at (N)NLO QCD + NLO QED
- PDF samples for error estimate provided
- photon PDF fitted to DIS and Drell-Yan data ($10^{-5} \lesssim x \lesssim 10^{-1}$)
(note lack of experimental information for large x)
- being updated; currently: NNPDF3.0QED

progress in NLO EW calculations

* NLO EW often more demanding than NLO QCD calculations (richer resonance structure, more mass scales, ...)
* most NLO EW results available based on dedicated calculations $(\boldsymbol{p} \boldsymbol{p} \rightarrow \boldsymbol{V}, \boldsymbol{V} \boldsymbol{j}, \boldsymbol{H} \boldsymbol{V}, \boldsymbol{V} \boldsymbol{V}, 4$ leptons, dijets, VBF, \ldots)
* automated tools start to play a more important role:

$$
\begin{aligned}
& \text { Recola, OpenLoops, MadGraph5_aMC@NLO } \\
& (\boldsymbol{p} \boldsymbol{p} \rightarrow \boldsymbol{V} \boldsymbol{j} \boldsymbol{j}, 4 \text { leptons, } \boldsymbol{t} \overline{\boldsymbol{t}} \boldsymbol{V}, \ldots)
\end{aligned}
$$

$p p \rightarrow W W \rightarrow 4 f:$ full NLO EW calculation

Biedermann et al. (05/2016)

flexible Monte-Carlo approach gives full control on lepton distributions and correlations with realistic selection cuts:

EW corrections small for total XS, but large and negative at high scales
note: based on two independent calculations
(Recola vs. dedicated standalone calculation)

combination of QCD and EW corrections

current experimental precision requires combination of NLO EW corrections with best QCD prediction
how to combine?
factorized or additive approach?

$$
\begin{gathered}
\left(1+\delta^{\mathrm{QCD}}\right) \times\left(1+\delta^{\mathrm{EW}}\right) \\
\text { versus } \\
\left(1+\delta^{\mathrm{QCD}}+\delta^{\mathrm{EW}}\right)
\end{gathered}
$$

can only be resolved by computing mixed QCD-EW corrections $\mathcal{O}\left(\delta^{\mathrm{QCD}} \delta^{\mathrm{EW}}\right)$

Drell-Yan: mixed QCD \times EW corrections

Dittmaier, Huss, Schwinn (2014-16):
Factorizable contributions: (only virtual contributions indicated)

- no significant resonance distortion expected
- no PDFs with $\mathcal{O}\left(\alpha \alpha_{\mathrm{s}}\right)$ corrections
- only $V l \overline{l^{\prime}}$ counterterm contributions \hookrightarrow uniform rescaling, no distortions
- significant resonance distortions from FSR
- calcullated, preliminary results

Non-factorizable contributions:
(only virtual contributions indicated)

- could induce shape distortions
- calculated, turn out to be small

Drell-Yan: mixed QCD \times EW corrections

Dittmaier, Huss, Schwinn (2014-16):

naive factorization
QCD \times EW works

naive factorization poor for

$$
p_{T, \mu}>M_{W} / 2
$$

NLO QED and NLO QCD with parton showers

[Barzè et al. (2014)]

QED and QCD corrections can be combined and matched consistently with parton shower using the POWHEG framework first implementation: $\boldsymbol{p} \boldsymbol{p} \rightarrow \boldsymbol{W} \boldsymbol{\gamma}$

the SM and precision calculations: summary

\checkmark guiding principle of modern particle physics: local gauge theories
\downarrow cornerstone of our understanding:
electroweak symmetry breaking \leftrightarrow Higgs mechanism

- tool of choice for better understanding: (hadron) colliders
- interpretation of experimental results requires precise theoretical predictions beyond LO in perturbation theory:
- consider (N)NLO QCD and NLO EW corrections
- match precision calculations to parton-shower programs
\checkmark status of theory predictions advanced, several public tools available

