Experimental particle physics at the LHC (4)

Kerstin Tackmann (DESY)

GRK1504/2: Autumn Block Course 2016

Recap: cross section measurements (I)

$$\sigma = rac{N_{ ext{meas}} - N_{ ext{bkgd}}}{\epsilon \cdot A \cdot \mathcal{B} \cdot \int \mathcal{L} \mathrm{d}t}$$

Experimental steps

- Estimate and subtract the background(s)
 - * Parameterize signal and background and fit to a distribution where signal and background look different $(m_{\gamma\gamma})$
 - Many analyses use control regions (in data) enriched in (a given type of) background to constrain contribution of background
- Correct for detector acceptance, and for efficiencies
 - Detector and selection efficiencies as much as possible determined on control samples from data
 - $\star\,$ Acceptance corrections usually need to be based on theoretical predictions
 - Fiducial measurements not or partially corrected for acceptance to reduce dependence on theoretical predictions
- If needed/wanted, correct for branching ratio(s)
- Determine the luminosity (see lecture 1)

Recap: cross section measurements (II)

$$\sigma = rac{N_{ ext{meas}} - N_{ ext{bkgd}}}{\epsilon \cdot A \cdot \mathcal{B} \cdot \int \mathcal{L} ext{d}t}$$

Differential cross section in variable x: $\frac{\mathrm{d}\sigma}{\mathrm{d}x}$

- In practice: bin-averaged cross section $\frac{\Delta\sigma}{\Delta x}$
- Background estimation and subtraction, efficiency and acceptance corrections performed for every bin
- Requires correction of resolution effects in x: unfolding
 - "Revert" the effect of imperfect detector resolution (migrations between bins)
 - Different methods available and used (needs care to avoid introducing biases into the measurement)

Uncertainties

- Statistical uncertainties due to finite number of events
 - \star In $H \to \gamma \gamma$, statistical uncertainties dominated by statistical uncertainties (fluctuations) in the background

Systematic Error

Random Error

- Systematic uncertainties related to analysis inputs, procedure, ...
 - ⋆ Understanding of detector and reconstruction
 - Understanding of backgrounds
 - ***** ...
- Evaluation of systematic uncertainties usually requires dedicated study for each of the possible systematic uncertainties

Uncertainties (non-differential measurements)

Source	Uncertainty on fiducial cross section (%)		
	Baseline	VBF-enhanced	single-lepton
Fit (stat.)	34.5	35.0	52.9
Fit (syst.)	9.0	11.1	9.3
Photon efficiency	4.4	4.4	4.4
Jet energy scale/resolution	-	9.4	-
Lepton selection	-	-	0.8
Pileup	1.1	2.0	1.4
Theoretical modelling	4.3	9.4	8.4
Luminosity	2.9	2.9	2.9

- Fit (stat.) statistical uncertainty, including contributions from floating the background parameters
- Fit (syst.) uncertainties on energy scale and resolution and background parametrization
- All others uncertainties on efficiency, acceptance and resolution corrections
 - ★ Theoretical modelling: Higgs production cross sections, Higgs kinematics, multiple parton interactions

Uncertainties (differential measurements)

- Uncertainties evaluated for each bin of a given observable
- Grouped into several categories:

Fiducial cross section measurements

Fiducial cross sections with specific signatures and topologies

Fiducial region	Measured cross section (fb)	SM prediction (fb)
Baseline	$43.2 \pm 14.9 (\mathrm{stat.}) \pm 4.9 (\mathrm{syst.})$	$62.8_{-4.4}^{+3.4}$ [N ³ LO + XH]
VBF-enhanced	$4.0 \pm 1.4 (\mathrm{stat.}) \pm 0.7 (\mathrm{syst.})$	2.04 ± 0.13 [NNLOPS + XH]
single lepton	$1.5 \pm 0.8 (\mathrm{stat.}) \pm 0.2 (\mathrm{syst.})$	0.56 ± 0.03 [NNLOPS + XH]

- Compared to theoretical predictions
 - $\star gg o H \ {
 m N^3LO}$ precision for total cross section, corrected for fiducial acceptance (with NNLOPS, with NNLO precision for total cross section) and $H o \gamma \gamma$ branching ratio
 - VBF, VH, ttH, ...: simulation samples reweighted to improved predictions for total cross sections
- Agreement with predictions to $1-2\,\sigma$

Differential cross section measurements (I)

- Differential measurements presently dominated by statistical uncertainties
- ullet Compared to predictions (NNLOPS for gg o H, rescaled simulation for the other production processes)
- No significant disagreements between data and predictions within current uncertainties

Differential cross section measurements (II)

Inclusive jet cross sections (cross section for events with $\geq N$ jets) compared to a variety of theoretical predictions

- Analytical predictions for gg o H (e.g. N³LO, STWZ/BLPTW)
- MC predictions (e.g. Powheg NNLOPS)

$H o \gamma \gamma$ couplings measurement

Measurements dedicated to understand Higgs boson production

- Many of the steps are in common with cross section measurements
 - Anything related to the two signal photons, general strategy for background subtraction
 - ▶ Will of course not discuss these again

- But some aspects come in addition to the cross section measurements
 - * Will concentrate on some of these

"Couplings analysis" in $H o\gamma\gamma$

- Define exclusive event categories by specific signatures expected from the different production processes
 - \star $t\bar{t}H$: events consistent with (semi)leptonic or hadronic $t\bar{t}$
 - * VH: events consistent with $Z \to \ell\ell$, $Z \to \nu\nu$, $W \to \ell\nu$ ($\ell=e,\mu$) or $V \to 2$ jets
 - * VBF: events with 2 jets with topology consistent with VBF (large $\Delta \eta_{jj}$, large $p_{Tt}^{\gamma\gamma}$, jets and photons separated)
 - $\star \hspace{0.1cm} gg o H$: kinematic separation $(p_{Tt}^{\gamma\gamma}, \eta^{\gamma})$ to increase sensitivity

$t\bar{t}H$ -enriched categories (I)

ullet Aim for high efficiency for tar t H, while suppressing other production modes

Search in two event categories

- Leptonic: 1 or 2 $t o b\ell\nu$
 - ★ ≥1 electron or muon
 - ★ \geq 1 b-tagged jet
 - \star $E_T^{
 m miss} >$ 20 GeV OR \geq 1 b-tagged jet
- Fully hadronic: 2 t o bjj'
 - ★ ≥ 5 jets (≥ 1 *b*-tagged)

$t\bar{t}H$ -enriched categories (II)

- Selection requirements enrich in $t\bar{t}H$ events and suppress other Higgs production modes
- No discrimination between non-Higgs events and non- $t\bar{t}H$ events

$t\bar{t}H$ -enriched categories (III)

- Backgrounds tt+photons, multi-jet/-photon
- Standard method to build background templates not applicable in t\(\bar{t}\)H
- Build control samples from data, e.g. ttH hadronic: revert identification or isolation requirements of photons, require 5 jets
 - Note: plot from earlier analysis with different (control region) selection

Simple parametrization with exponential sufficient

$t\bar{t}H$ -enriched categories (IV)

Leptonic

Hadronic

	$tar{t}H$ leptonic	$tar{t}H$ hadronic
Expected N_H	1.4	2.0
Expected $N_{tar{t}H}$	1.3	1.8
Expected purity	89%	88%
Fitted N_H	-0.2	-0.2

VH-enriched categories (I)

Dilepton ($Z o \ell\ell$)

2 opposite-charge isolated electrons with $p_T^e>$ 10 GeV or 2 opposite-charge isolated muons with $p_T^\mu>$ 10 GeV with 70 GeV $< m_{\ell\ell}<$ 110 GeV

One lepton $(W o \ell u)$

1 isolated electron $p_T^e >$ 10 GeV or 1 isolated muon $p_T^\mu >$ 10 GeV,

$$E_T^{
m miss}$$
 significance $rac{E_T^{
m miss}}{\sqrt{\sum E_T}} >$ 4.5, $p_T^{\gamma\gamma} >$ 60 GeV

Missing transverse momentum $(W \to \ell \nu, Z \to \nu \nu)$

$$E_T^{
m miss}$$
 significance $rac{E_T^{
m miss}}{\sqrt{\sum E_T}} >$ 7, $p_T^{\gamma\gamma} >$ 90 GeV

Dijet
$$(W o jj, Z o jj)$$

 \geq 2 jets with 50 GeV $< m_{jj} <$ 150 GeV, BDT based on $m_{jj}, p_{Tt}, \cos \theta^*_{\gamma\gamma, jj}$

Interlude: (Boosted) decision trees (I)

- Decision tree: sequential application of cuts splits the data (into nodes), where the final decisions (nodes) calssify an event as signal or background
- First split training samples according to cut on best variable
- Continue splitting until min. number of events or max. purity reached

 Boosted decision tree: combination of many decision trees, with differently weighted events in each tree (trees themselves can be weighted)

Interlude: (Boosted) decision trees (II)

- Emphasize different feature in data sample, e.g. events that are hard to classify
- E.g. adaptove boosting reweights events misclassified by previous classifier by

$$w_{
m mis}^{(i)} = rac{1 - f_{
m mis}^{(i)}}{f_{
m mis}^{(i)}}$$

with $f_{
m mis}$ fraction of misclassified events

- Final decision obtained from weighted sum over all decision trees
- Different boosting algorithms exist

Interlude: (Boosted) decision trees (III)

- Danger: overtraining tuning to statistically insignificant information in the training sample
- Reduced by increased size of training sample

Cross validation

- ullet Divide full data into n subsamples
- ullet Train on all but subsample i
- ullet Test performance on subsample i

Back to: VH-enriched categories (II)

- ullet Backgrounds dominated by $Z\gamma\gamma$ and $W\gamma\gamma$
- As for $t\bar{t}H$, standard method to build background templates not applicable for non-hadronic V decays

	dilep	one lep	$E_T^{ m miss}$	dijet1	dijet2
Expected N_H	0.3	0.6	0.9	2.6	9.9
Expected purity ZH	95%	3%	56%	17%	11%
Expected purity WH	0%	84%	29%	28%	17%
Fitted N_H	0.07	0.12	0.18	1.0	4.7

VH-enriched categories (III)

VBF-enriched categories (I)

Select with 2 jets and VBF topology:

- 2 well-separated jets $(\Delta \eta_{ii}, m_{ii})$
- Boosted diphoton system $(p_{Tt}^{\gamma\gamma})$
- Jet-photon separation ($\Delta \phi_{\gamma\gamma;ij}$, $\eta^* = \eta_{\gamma\gamma} - 1/2(\eta_{j1} + \eta_{j2}), \Delta R_{\min}^{\gamma j}$
- → Combined in a BDT

VBF-enriched categories (II)

	tight	loose
Expected N_H	8.1	17
Expected purity	76%	52%
Fitted N_H	13	21

2-Jets candidate

[Phys. Lett. B 726 (2013)]

VBF-enriched categories: theoretical uncertainties

- VBF categories selected using a BDT based on 6 kinematic variables
- $\Delta\phi_{\gamma\gamma jj}$ sensitive to presence of third jet (\rightarrow indirect jet veto)
- Substantial theoretical uncertainties on acceptance for gg o H for this specific region of phase space
 - Due to strong restriction of additional QCD radiation

[Phys.Rev. D87 (2013) no.9, 093008]

VBF-enriched categories: theoretical uncertainties

- VBF categories selected using a BDT based on 6 kinematic variables
- $\Delta \phi_{\gamma \gamma jj}$ sensitive to presence of third jet (\rightarrow indirect jet veto)
- Substantial theoretical uncertainties on acceptance for gg o H for this specific region of phase space
 - Due to strong restriction of additional QCD radiation

	σ	
VBF tight	52%	
VBF loose	25%	
[8 TeV analysis]		

Untagged categories (I)

Remaining events are categorized based on photon η and p_{Tt}

- Separate events with better and worse signal-to-background
- Separate events with better and worse signal resolution

Central Both photons have $|\eta| < 0.95$ Forward At least one photon has $|\eta| > 0.95$

 $rac{ ext{Central}}{ ext{into}}$ and $rac{ ext{forward}}{ ext{deV}}$ (low) and $p_{Tt} > 70\, ext{GeV}$ (high)

Untagged categories (II)

Categories ↔ production processes

Event categories are enriched in events from a given production process

Then "unfold" to signal strength per production process μ_i by one global fit:

$$N_k^{
m sig} = \sum_i \mu_i \sigma_i^{
m SM} \cdot \mathcal{B}(H o \gamma \gamma)^{
m SM} \cdot \epsilon_{ik} \cdot A_{ik} \cdot \int L \, \mathrm{d}t$$
 with $\mu_i = \sigma_i \cdot \mathcal{B}(H o^i \gamma \gamma) / \sigma_i^{
m SM} \cdot \mathcal{B}(H o \gamma \gamma)^{
m SM}$

Kerstin Tackmann (DESY)

Effect of categorization on analysis (I)

 Weighting each event by the expected signal-to-background ratio of its category

- Visual impression of effect of event categorization on analysis
 - * Gain beyond quantities that rely on the separation of production modes

Effect of categorization on analysis (II)

Signal strength measurements

Results presented at ICHEP 2016

Caveat: μ_{Run-1} was derived assuming an older prediction for the Higgs production cross section than μ_{Run-2} , where the gluon fusion production cross section is larger by approximately 10%

Cross section measurements

Avoid problems like this by measuring cross sections

$$\sigma_{ggH} \times \mathcal{B}(H \to \gamma \gamma) = 65^{+32}_{-31} \text{ fb}$$
 $\sigma_{VBF} \times \mathcal{B}(H \to \gamma \gamma) = 19.2^{+6.8}_{-6.1} \text{ fb}$
 $\sigma_{VH} \times \mathcal{B}(H \to \gamma \gamma) = 1.2^{+6.5}_{-5.4} \text{ fb}$
 $\sigma_{t\bar{t}H} \times \mathcal{B}(H \to \gamma \gamma) = -0.3^{+1.4}_{-1.1} \text{ fb}$

In future, move to measuring cross sections instead of signal strength(s)

Systematic uncertainties: gg o H

- → What is the impact of a given uncertainty on the measurement?
 - Dominant experimental: energy resolution, photon id efficiency, background parametrization
 - Dominant theoretical: gg o H missing higher orders, $\mathcal{B}(H o \gamma\gamma)$, gg o H Pdf
 - Substantially smaller for cross section measurement

Systematic uncertainties: VBF

Other uncertainties are important (due to use of jets)

- Dominant experimental: energy resolution, photon id efficiency, jet energy scale
- Dominant theoretical: $gg \to H$ missing higher orders in VBF phase space, $\mathcal{B}(H \to \gamma \gamma)$
 - ★ Phase space-specific uncertainties are not reduced in measurement of total VBF cross section

Bonus: Mass measurement

- Mass measured from Higgs peak position
- Dedicated event categorization: 10 categories according to η^{γ} , converted/unconverted γ and p_{Tt}
 - Splitting motivated by systematic uncertainties

$$m_H = 125.98 \pm 0.42 \text{(stat)} \pm 0.28 \text{(syst)} \text{ GeV}$$

 Dominant systematic uncertainty from energy scale

Mass measurement: systematic uncertainties

