Investigation Of Shower Influences On $t\bar{t}$ Pairs With The CMS Experiment

Alexander Flossdorf

DESY

MC Group Meeting, 03/03/2009

Contents

- 1 Introduction
- $\mathbf{2} p_T$ of $t\bar{t}$ system
- 3 Full simulation

Parton Shower

B. Webber, CERN Training Lecture, Februrary 2008

- Evolution of parton from hadron A to hard process
- t: Virtuality of parton
- x: Parton's momentum fraction of initial hadron momentum
- Parton gets transverse momentum due to radiation
- Understanding of radiation will play a crucial role for $t\bar{t}$

Used Generators

Introduction p_T of $t\bar{t}$ system Full simulation

Standalone Event Generators

- Herwig (angular ordered showers)
- Herwig++ (angular ordered showers)
- Pythia 6 (Q^2 and p_T^2 ordered showers)
- Pythia 8 (p_T^2 ordered showers)

Generators Including Higher Order Contributions On ME Level

- MC@NLO (NLO computation on matrix element level)
 - uses Herwig for showering and hadronisation
- Alpgen (accounts for additional hard partons at ME level)
 - uses Herwig or Pythia 6 for showering and hadronisation

Shower Types

Introduction p_T of $t\bar{t}$ system Full simulation

B. Webber, CERN Training Lecture, Februrary 2008

Wimpy Showers

- Maximum scale for shower is $t_{max} \sim t_{hard}$
- Cutoff in shower evolution

Power Showers

- Maximum scale for shower is $t_{max} = s$
- Whole phase space is used

5

Matching

Introduction p_T of $t\bar{t}$ system Full simulation

Matched Showers

- Hardest radiation is calculated on tree level (NLO diagrams)
- Parton shower accounts for soft radiation
- Matching with parton shower to avoid double counting
- MC@NLO uses subtraction method internally
- Alpgen uses a veto algorithm to discard events wich suffer from double counting

Shower Algorithms

T. Sjöstrand, European School of HEP, June 2006

- evolution from the hard interaction (ME) on
- decreasing in Q^2 : Pythia 6
- decreasing in p_T^2 : Pythia 6 and Pythia 8
- decreasing in angle: Herwig and Herwig++

p_T of $t\bar{t}$ system

- Big difference in distribution depending on tuning
- Amount of radiation depends on scale for α_s
- Nearly independent of phase space cut

Tail of p_T distribution

Introduction p_T of $t\bar{t}$ system Full simulation

All wimpy showers show similar behaviour

Tail of p_T distribution

- All wimpy showers show similar behaviour
- p_T ordered power shower favours high p_T regions

Tail of p_T distribution

- All wimpy showers show similar behaviour
- p_T ordered power shower favours high p_T regions
- Samples with hardest radiation on ME level agree quite well

Parton jets

Introduction p_T of $t\bar{t}$ system Full simulation

• Leading jet p_T corresponds with $t\bar{t}$ p_T

 Rapidity of leading jet depends on ordering

Δy between $t\bar{t}$ and first additional jet

Introduction p_T of $t\bar{t}$ system Full simulation

• Δy depends on evolution variable

Cascade

- Cascade behaves power shower like
- Completely different prediction from Cascade

Reconstruction of $t\bar{t}$ pairs

- Analysis of semileptonic decays with a muon
- Study for integrated luminosity of $15\,\mathrm{fb^{-1}}$ at $\sqrt{s}=14\,\mathrm{TeV}$
- Background from SM processes:
 - $t\bar{t}$ other decay modes
 - W + jets
 - Z + jets
 - QCD (as good as possible)

CMS Experiment

Introduction p_T of $t\bar{t}$ system Full simulation

Simulated signal events

- Herwig, wimpy shower, angular ordered
- MC@NLO, first order ME matched to angular ordered shower
- Pythia, power shower, Q² ordered
- Pythia, power shower, p_T² ordered

Reconstruction

Introduction p_T of $t\bar{t}$ system Full simulation

Reconstruction of objects

- KT4 jet algorithm
- B-tagging by checking consistency of tracks with the primary vertex
- Jets corrected to final hadron state
- Muon isolation:
 - \rightarrow Tracker: $0.01 \cdot p_T(\mu) < \sum_{\Delta R=0.3} p_T p_T(\mu) < 0.15 \cdot p_T(\mu)$
 - ightarrow Calorimeter: $\sum_{\Delta R=0.3} E_T < 0.15 \cdot p_T(\mu)$

Preselection and selection

Introduction p_T of $t\bar{t}$ system Full simulation

Preselection

- Exactly one isolated muon
- At least three jets with $p_T > 35 \, {\rm GeV}$ and four jets with $p_T > 25 \, {\rm GeV}$

Selection

- · Reconstruct system via kinematic fit
- Fit probability > 0.01
- Highest b-tag > 0.4
- $H_T(t\bar{t}jets) > 150$

Result: S/B: 2.2 - 2.8, depending on generator

- Distribution distorted
- Large migration effects

- Reconstruction of $t\bar{t}$ system p_T tail possible
- · Background has similar shape as signal
- Huge migration effects that have to be corrected for

Purity and stability

Introduction p_T of $t\bar{t}$ system Full simulation

Effects resulting from migration of signal events: $purity = \frac{events(gen\&\&rec)}{events(reco)}$ stability =

$$purity = rac{events(gen\&\&rec)}{events(reco)}$$

$$stability = \frac{events(gen\&\&rec)}{events(gen)}$$

Bias of selection procedure

Bias of selection procedure

Introduction p_T of $t\bar{t}$ system Full simulation

• Large bias in phase space in preselection

Bias of selection procedure

- Large bias in phase space in preselection
- High p_T tail gets reconstructed less often than intermediate region

Leading additional jet

- ullet principal structure of leading jet p_T and y reconstructed correctly
- both observables suffer from physical and huge combinatorial background

Δy fitted $t\bar{t}$ system and leading jet

- Strong distortion of the distribution
- Ordering of the distributions correct

Summary

Introduction p_T of $t\bar{t}$ system Full simulation

Summary

- Tail of p_T distribution of $t\bar{t}$ system sensitive to phase space populated by radiation
- · First additional jet sensitive to ordering variable of the parton shower
- Reconstruction of $t\bar{t}$ pairs and identification of additional hardest jet reproduce the effects qualitatively

Outlook

- Background and combinatorics need proper treatment
- Background subtraction and unfolding may improve the result

