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Experimental (LHC) Motivation

• Considerably enlarged phase space at LHC, so
important to account for non-linear effects.

• May expect many effects in the UE, but complicated
both for perturbative and non-perturbative component.

• Deviations from linear evolution expected also to
influence “hard” observables, ex: Jet production at
forward η.

• LHC jets: Q & 10 GeV. Not necessarily DGLAP
physics. BFKL type physics important when
Y = ln s & ln Q2.
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Experimental (LHC) Motivation

• Saturation effects can be felt also for Q > Qs. A(x, k⊥)

above Qs modified by saturation below Qs.

• At LHC expect Qs ∼ 2, 3 GeV. Much higher Qs in rare
events if one focus on “hot spots” inside the proton.

• Thus important to make realistic and quantitative
predictions on the effects of saturation when Q2 > Q2

s.
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Theoretical Motivation and
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• More reasons to concentrate on Q > Qs:
• Evolution below Qs complicated with complex

many-body correlations. Instead we can
concentrate on A(x, k⊥) alone and standard
k⊥-factorization ok, but with A(x, k⊥) modified.
Applicable in present MC’s.

• No detailed knowledge of saturation mechanism
necessary. Qs determined fully by linear evolution, if
the linear evolution is endowed by an absorptive
boundary restoring unitarity.

• Opens possibility to study effects of saturation on
formalism whose non-linear generalization not known
yet, e.g. CCFM or BFKL beyond LL approx.
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Theoretical Motivation and
Philosophy

• For fixed ᾱs and Y → ∞ we know this is case from
analogy to statistical physics.

• A priori not clear if this strategy works for running ᾱs or
for realistic Y .

• For running ᾱs linear evolution IR unstable, and
resembles more of a “pushed” type evolution rather
than “pulled” type.

• Yet, our analysis demonstrate the strategy works also
in this case: for running ᾱs and for all Y .
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Traveling waves and fronts

∂tT (t, x) = T (t, x) + ∂2
xT (t, x) − T 2(t, x)
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Application: Absorptive
boundary

• Define first line of constant amplitude:
T (Y, ρ = ρc(Y )) = c < 1, ρ ≡ ln(r2

0/r
2) or ln(k2

⊥
/k2

0).
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Application: Absorptive
boundary

• Define first line of constant amplitude:
T (Y, ρ = ρc(Y )) = c < 1, ρ ≡ ln(r2

0/r
2) or ln(k2

⊥
/k2

0).

• A distance ∆ behind ρc, apply boundary condition.

• Most natural choice: T (Y, ρ) = 0 for ρ ≤ ρc − ∆.

• ∆ and c as free parameters. However, correlated as
∆ ∼ ln(1/c)

Emil Avsar, 2009, Paris – p.



Meaning of absorptive
boundary

ln k2

ln 1/x

(x , k )
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A few comments

• ρs can be identified with maximum of T , or any point of
constant T between c and 1.

• Cannot use this procedure to study any problem
sensitive to ρ . ρs. For ρ > ρc ≈ ρs works very good.

• We are interested in A(Y, k⊥) and not T (Y, r).
However, same conditions apply on A(Y, k⊥),
A ∼ O(1) at saturation
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Results: BFKL with ab vs BK
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• Left: c = 0.1,∆ = 5.0 Right: c = 0.3,∆ = 3.0.
Y = 20 + 10 ∗ i, ᾱs = 0.2.
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Results: Running ᾱs
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• Left: Y = 10, 20, 30, 40. Right: Y = 6, 8, 10, 12, 14.
c = 0.1,∆ = 5.0.
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Results: IR sensitivity
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• ᾱs(Q
2) → ᾱs(Q

2 + µ2). Checking sensitivity to µ.
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CCFM

• Real emission density in CCFM: ᾱs
dyk

yk

dξk

ξk

, yk energy
fraction, ξk squared angle: ξk = q2

k/(y
2
kE

2)

• Virtual form factors Seik and Sne:

S2
eik = exp

(

−ᾱs

∫ yk

yk+1

dy

y

∫ ξ̄ dξ

ξ

)

,

S2
ne = exp

(

+ᾱs

∫ yk

yk+1

dy

y

∫ ξ̄

ξ(Qk)

dξ

ξ

)

,

• ξ̄: Maximal angle allowed by coherence
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CCFM

• As in BFKL strong ordering in the yk. However, color
ordering need not agree with yk ordering.

• In fact, coherence states that color ordering should
agree with angular ordering.

• Real emissions can be divided into two classes:
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CCFM

• As in BFKL strong ordering in the yk. However, color
ordering need not agree with yk ordering.

• In fact, coherence states that color ordering should
agree with angular ordering.

• Real emissions can be divided into two classes:
• Those ordered both in angle and in energy (yk).

Hard or fast emissions.
• Those followed in angle by an emission with larger

yk. Soft emissions.

• Hard: 1/zk, Soft: 1/(1 − zk), where yk = (1 − zk)xk−1.
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Virtual form factors
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Relation to BFKL
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Hard and Soft emissions
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• 1, 2, . . . hard emissions, a, b, . . . soft emissions.
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The “Sudakov” and the
“non-Sudakov”
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• Define the “Sudakov” form factors by ∆s(k) = e−ᾱsCk ,
and “non-Sudakov” by ∆ns(k) = e−ᾱsAk .

Emil Avsar, 2009, Paris – p. 19



Extracting out the Soft
Emissions

• Sum exclusively over soft emissions in each Ck: eᾱsCk .

• ∆s(k) · eᾱsCk = 1, i.e. soft emissions cancelled by
Sudakov (Probability conservation).

• Left with only 1/z pole and ∆ns, simpler gluon
distribution.

• Important that soft emissions do not change t-channel
k⊥.

• Actually also holds for certain subset of hard emissions
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Simplifying more

• Sum over real hard emissions in Ak. ⇒ Cancellation of
∆ns and simpler formula.

• Most importantly, the gluon distrb. A(Y, k, q̄) ⇒ A(Y, k)

for q̄ ≥ k.

• Much easier and faster numerical solution to integral
eq.

• However, eq. to be derived not exactly unique, and
different eq. ⇒ different intercepts.
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The Equations

• First equation:

∂Y A(Y, k) = ᾱs

∫

dk′2

|k2 − k′2| h(κ)

(

θ(k2 − k′2)A(Y, k′)

+θ(k′2 − k2)θ(Y − ln(k′2/k2))A(Y − ln(k′2/k2), k′)

)

.

where κ ≡ min(k2, k′2)/max(k2, k′2) and

h(κ) = 1 − 2

π
arctan

(

1 +
√

κ

1 −√
κ

√

2
√

κ − 1

2
√

κ + 1

)

θ(κ − 1/4).
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The Equations

• Second equation:

∂Y A(Y, k) = ᾱs

∫

dk′2

max(k2, k′2)

(

θ(k2 − k′2)A(Y, k′)

+θ(k′2 − k2)θ(Y − ln(k′2/k2))A(Y − ln(k′2/k2), k′)

)

.

• Solve these equations in the presence of the saturation
boundary.
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Results
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• Left: 1st eq. vs BFKL with kin. cons. Right: BFKL
without kin. cons. vs BFKL with kin. cons.
Y = 40 → 140, running ᾱs.
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• 1st equation vs 2nd. Left: Y = 40 → 120, Right:
Y = 10, 12, 14.
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Results
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• Solution to 1st equation with and without saturation
boundary for Y = 8, 10, 12, 14.
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Saturation momentum

• For running ᾱs, the saturation momentum Qs can be
parametrized as Qs = Q0 exp(λr

√
Y )

• For the 1st eq, and BFKL (with and without kin. cons.)
we find λr ≈ 3.0

• For 2nd equation we find λr ≈ 3.2

• For fixed ᾱs all results consistent with
Qs = Q0 exp(λf (ᾱs)Y ).
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Some final comments

• Method described can be implemented immediately in
present MC’s.

• Collaboration with H. Jung at Desy for implementing
idea on CASCADE.

• Valuable as one can check effects of saturation on
exclusive final states.
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