Status
TrackFinderVXDCellOMat



Slide from last F2F by Jakob

Future state of the trackFinderVXD-approach (event-part)

([ Share principle o
SecMap &
Seg mentNetwork

Orange box: SpacePointTrackCand

{ Responsibility of detector ‘

Software groups

PXD S'EZZTS:"T KF (genFit)
Clusterizer = m 1-3 weeks
PXDy " \
CA

. — 2+ weeks . o CircleFit

svo __ Seacebont N'Seqmet- || 0 Ve g ] | P

= Clusterizer == C(rg{aéor Network- x NE“AVOTk' =
e Producer
aot Producerof CKF DAF (genFit) ‘

Violet box:
Responsibility of tracking group

sPrc got® T ot

= Referee

AR [ creedy, el
e e /|| [oawesis] o ; 3 ]
Clusterizer TEL ép‘ﬂe’ : \\ vi‘\\ o HelixFit 07" / /
! o \ ke SPTCNetwork TFAnalizer
: . 0
i |‘ \\ LineFit .o0%" 0 &
Clusters of detector type SegmentNetWUrk \“'\‘__‘ 1 2 WE@ g ,‘\oe’é repeat with GfTC->SPTC ¥
SpacePoint = different settlngs converteéo\f\e.
light blue box: module
green-ish box: remark A‘ Randon&o“e SPTC->GITC
red box: TF steps s o conve rterAO\(\@
Grey-}ishhbox: es:i time needed \ Independent from Independent from Modules:
text w/o box: interface-container Detector type, i iliti
yp | Extended analysis capabilities % by Tho Madlener

state of January 10

Jakob is currently visiting
us in Karlsruhe.

At the last F2F tracking
meeting, we agreed, that
KA helps
opportunistically in the
VXD tracking by
attacking the later steps,
while Pisa works on the
earlier steps and Stefano
Spataro works on the
Sector Map set up.

I’'m currently working on
Step 4 (and plant to work
on 5).

Felix is trying to
understand the stuff in
step 2, 3




Status

e There are working modules for step 4 in the Track Finder, but

o it was difficult to find a good starting point to understand them,
o their time consumption in a relevant setting was considerable.

e My impression was, that
o part of the problem was the fact, that a very complicated

Object, the SpTcNetwork (SpacePoint Track Candidate
Network) was the communicating object on the DataStore,

o enormous amounts of debug output was partially put in

Hopfield

anything with respect to the algorithm. Network-
Producer

functions, of which it wasn'’t clear, that they are not doing SPTC- A0 -

Greedy 30




This is the DataStore object for module to
module communication.

Example

The comment for this object gives only

/**.The SpTcNett-tork class. - .
b redundant information.

B Is intended to be used as Store tr
i
class SpTcNetwork : public RelatilonsObject {

protected:

I** FEFEEFERREARRREERERNEEEET DATA MEMBERS #### %833 %3233 385833542223 */

Comp"cated Network J** the actual network, packed here to be able to be stored as StoreArray-Compatible object */
Container iject, that TCNetworkContainer<SPTCAvatar<TCCompetitorGuard>, TCCompetitorGuard > m_network;

WII_I use algorlthm_ [/** 1f true, overlaps are checked via SpacePolnts. If false, overlaps are checked vlia clusters */
ObjeCtS, that are given bool m_compareSPs;

toitto perform Sthf’ ClassDef(SpTcNetwork, 1) // last member changed: m_network
e.g. the DataStore  pubtic:

object is responsible j'l"l‘ FEFEREERFEREERFERERTREEEF CONSTRUCTORS # ¥ %% %% 3 ¥ ¥R %% ¥ ¥ %%kt d 2 v ¥ */

for the execution of /** standard constructor for Root IO */

the algorithm. SpTcNetwork() :
N Tl'y putting simple m_network(TCNetworkContailner<SPTCAvatar<TCCompetltorGuard>, TCCompetiltorGuard =()),

m_compareSPs(false) {}
stuff on the DataStore,

so one can start [** specific constructor allowing to set comparison mode */

somewhere to SpTcNetwork(bool compareSPs) :

understand the code. m_network(TCNetworkContailner<SPTCAvatar<TCCompetitorGuard>, TCCompetitorGuard >()),
m_compareSPs{compareSPs) {}



Rewrite of Step 4

e What is really needed by Hopfield/Greedy from the SPTCNetworkProduce?
o Alist of which track is in conflict with which other track!

o Perhaps something as simple as the
OverlapNetwork

namespace BelleZ {
class OverlapNetwork : public RelatlonsObject {
public:
OverlapNetwork{const std::vector <std::vector <unsigned short> >& overlapMatrix) :
m_overlapMatrix(overlapMatrix)

{3}
std::vector<unsigned short>& getOverlapForTrackIndex(unsigned short trackIndex)
{
return m_overlapMatrix[trackIndex]; Network-
} Producer

private:
std::vector<std::vector <unsigned short> > m_overlapMatrix;
ClassDef(OverlapNetwork, 1)

IH
3




How is the OverlapNetwork filled?

e With the
SVDOverlapChecker
module:

namespace Belle2 {

/** Checks overlap of SpacePolntTrackCandidates, e.g. multiple usage of the same 1D Cluster.
o
Expects StoreArray of SpacePoilntTrackCandidates;
Produces OverlapNetwork, that can be asked, with which other ones a track candidate overlaps;

The algorithm idea is the followlng:<br>

- Loop over all SpacePointTrackCandidates<br>

- Loop over all SpacePoints of each candildate<br=>

- F1ll for 1D SVD clusters a matrix[ClusterID][TrackIndex] <br>
- F111 the OverlapNetwork (which really 1s an overlap matrix)

* % & & & * * ®

)
class SVDOverlapCheckerModule : public Module {

public:
/** Constructor of the module. */
SVDOverlapCheckerModule();

J** Initializes the Module. */
vold initialize() override filnal
{
f//make requirements known to the framework;
//TODO: Decide on elther taking a parameter or rewrilte the testlng steering fille to use the default names.
m_spacePoilntTrackCands. isRequired(" caSPTCs");
m_svdClusters. 1sRequired();

m_overlapNetwork.reglsterInDataStore();

3

/** Checks for overlaps and fills the OverlapNetwork. */
vold event() override final;



SVDOverlapCheckerModule:: SVDOverlapCheckerModula() : Module()

{

}

vold SVDOverlapCheckerModule:: event()

{

setDescription(” Module checks for overlaps of SpacePoilntTrackCands)
and stores them in an OverlapNetwork, which is baslcally a matrix of overlaps.");

I’m not sure, if this algorithm is reasonable for PXD
based SpacePoints, as there are typically more

//Create matrix[svdCluster][track] PXD clusters and SpacePointTrackCandidates.
unsigned short nHits = m_svdClusters.getEntries();

vector<vector<unsigned short> > svdHitRelatedTracks(nHits);

J/TOD0: Check 1f one saves time by reserving some space for each single of those vectors;

J/now fill the cluster/track matrix:
unsigned short nSpacePolntTrackCandidates = m_spacePolntTrackCands.getEntries();
for (int 11 = 0; 11 < nSpacePoilntTrackCandidates; 1i++) {

for (auto &8& spacePolntPolnter : m_spacePolntTrackCands[i1]->getHilts()) {
J/only SVD 1s handled wilth this algorithm
1f (spacePolntPoilnter->getType() != VXD::SensorInfoBase::SensorType::SVD) contlnue;

//at the position of the svdCluster Index, the track index is pushed back;

RelationVector<SVDCluster> svdClusterRelations = spacePointPointer->getRelationsTo<SVDCluster>();

for (SVDCLuster const& svdClusterPoilnter : svdClusterRelations) {
svdH1tRelatedTracks[svdClusterPointer.getArrayIndex()]. push_back(il);

3 Creation of the

} . actual overlapMatrix

_ — in a separate object.
//Create the overlap matrix and store it into the OverlapNetwork
OverlapMatrixCreator overlapMatrixCreator(svdHltRelatedTracks, nSpacePointTrackCandidates);
m_overlapNetwork. appendNew(OverlapNetwork(overlapMatrixCreator.getOverlapMatrix()));



std::vector <std::vector<unsigned short> > getOverlapMatrix()
{
//Loop over all the hits and make corresponding connections for the tracks From the .
for (auto && tracks : m_hitRelatedTracks) { OverlapMatrixCreator.
for (unsigned short 11 = 0; 11 < tracks.silze(); 1i++) {
for (unsigned short jj = 11 + 1; jj < tracks.size(); jj++) {
m_overlapMatrix[tracks[i1]].push_back(tracks[33]1);
m_overlapMatrix[tracks[J]]].push_back(tracks[11]);
3
}
}

//sort and erase overlaps
J/TOD0: Check in realistic situation alternative approach:
//see http://stackoverflow.com/questions/1041620/whats-the-most-efficient-way-to-erase-duplicates-and-sort-a-vectfir
for (auto &% overlapTracks : m_overlapMatrix) {
std::sort(overlapTracks.begln(), overlapTracks.end());
overlapTracks.erase(std::unique(overlapTracks.begin(), overlapTracks.end()), overlapTracks.end());

}

return m_overlapMatrix;



Main Goal is working Setup for “Round1”

e Use the TrackFinderVXDCellOMat for SVD only track finding;
e Do either/or

o Extrapolate to PXD and add all hits in the proximity, e.g. “Region of Interest” to the track and
let the DAF decide, which of the PXD hits should really be taken up by the track;

o Use a Combinatorial Kalman Filter to extrapolate to the PXD;

In any case for this simple idea, we don’t need the XXXOverlapChecker (an

OverlapCheckerModule exists already, checking for the whole detector, if there are any
overlaps) to work with PXD hits from the start;



If the output from the SVDOverlapChecker is as useful for the Hopfield Network
as the SPTCNetwork, we have a substantial improvement in CPU resource
usage.

Pe rformance? Hopfield itself (not shown) is as well bad, but can fairly easily be improved
(matrix library). Remaining to be attacked is the SegmentNetworkProducer,
that depends strongly on the sector map, could be reduced perhaps with more

e Using a slightly modified passes... , Eugenio’s, Stefano’s,...(?) work
tracking/vxdCaTracking/extendedExamples/secMapGen/testVXDTFRelatedModules.py

| can get the following e R Ry T Thmelal T TimefmellCall

Name | Calls | VMemory(MB) | Time(s) | Time(ms)/Call

time consumptions for the RootInput | 30 | 0| 0.07 | 2.34 +- 0.44
modules: EventInfoPrinter | 30 | 0 | 0.00 | 0.00 +- 0.00
Gearbox | 30 | 0 | 0.00 | 0.00 +- 0.00

Geometry | 30 | 0 | 0.00 | 0.00 +- 0.00

EventCounter | 30 | 0 | 0.00 | 0.13 +- 0.03

[ SectorMapBootstrap | 30 | 0 | 0.00 | 0.00 +- 0.00
SpacePointCreatorsvD | 30 | 0 | 0.03 | 1.10 +- 0.12

20 muons per event; SpacePointCreatorPXD | 30 | 0| 0.01 |  0.18 +-  0.02
SpacePoint2TrueH1tConnector | 30 | 0 | 9.05 | 1.81 +- 0.18

0.1<p<0.145 GFTC2SPTCConverter | 30 | 0 | 0.04 |  1.26 +- 0.14
SPTCReferee | 30 | 0 | 9.01 | 0.20 +- 0.04

60 < theta <85 SpacePoint2T rueHitConnector | 30 | 0| 0.17 |  5.61 +- 0.70
: RawSecMapMerger | 30 | 0 | 0.00 | 0.00 +- 0.00

0 < phl <90 SegmentNetworkProducer | 30 | 0 | 55.22 | 1840.61 +- 641.71
] TrackFinderVXDCellOMat | 30 | 0 | 0.31 | 10.21 +- 8.08
SPTCvirtualIPRemover | 30 | 0 | 0.00 | 0.15 +- 0.13

fairly harsh, see next slides LtvEst! Lclebli 40l o | .07l —2.46 +-1.20
( y ’ ) PTCNetworkProducer | 30 | 0 | 29.20 | 973.21 +-2322.67
VDOverlapChecker | 30 | 0 | 3.73 | 124.19 +- 216.05

rackF Lnder nacizer | 30 ] 0 | 0.82 | 27.40 +- 20.7/9




SegmentNetworkProducerModule:event: event 29

[INFO] As no network (DirectedNodeNetworkContainer) was present, a new network was created

[DEBUG] Pass 0 is finished with 5 rounds (negative numbers indicate fail)! Of 819 cells total, theilr states were:

had 536 cells of state 0

had 208 cells of state 1

had 69 cells of state 2

had 6 cells of state 3

had © cells of state 4
{ module: TrackFinderVXDCellOMat @include/tracking/trackFindingVXD/algorithms/CellularAutomaton.h:126 }

[INFO] TrackFinderVXDAnalizer-Event 29: the tested TrackFinder found: IDs (total/perfect/clean/contaminated/clone/tooShort/ghost: 20/20/0/0/170/0/156) within 346 TCs
and lost (test/ref) 0/0 TCs. nBadCases: 0 refClones: 0

There are 20 referenceTCs, wlth mean of 0.000000/8.500000 PXD/SVD clusters

There are 346 testTCs, with mean of 0.000000/8.132948 PXD/SVD clusters

[INFO] TrackFinderVXDAnalizer-Event 29: the tested TrackFinder had an efficilency : total/perfect/clean/contaminated/clone/tooShort/ghost: 100.000000%/100.000000%/0.00

0000%/0.000000%/850.000000%/0.000000%,/780.000000%

[INFO] TrackFinderVXDAnalizer-Event 29: totalCA|totalMC|ratlo of pxdHits 0|®|-nan, svdHlts 2814|170|16.552940 found by the two TFs

[INFO] EventCounterModule - Event: 30 having 43/167 pxd/svdClusters. Detalled info:

PXD:

L1: nClusters: 22, nPixels: 29

L2: nClusters: 21, nPixels: 31

PXD total: nClusters: 43, nPilxels: 60

meanPXD per Layer: nClusters: 21.5, nPixels: 30

SVD:

L3: nClusters: 36, nClusterCombinations: 164, nUStrips: 51, nVStrips: 41, nStripsTotal: 92

L4: nClusters: 49, nClusterCombinations: 191, nUStrips: 55, nVStrips: 51, nStripsTotal: 106

L5: nClusters: 39, nClusterCombinations: 86, nUStrips: 42, nVStrips: 36, nStripsTotal: 78

L6: nClusters: 43, nClusterCombinatilons: 108, nUStrips: 41, nVStrips: 43, nStripsTotal: 84

SVD total: nClusters: 167, nClusterCombinations: 549, nUStrips: 189, nVStrips: 171, nStripsTotal: 360

meanSVD per Layer: nClusters: 41.75, nClusterCombinatilons: 137.25, nUStrips: 47.25, nVStrips: 42.75, nStripsTotal: 90

Random event, e.g.:
549 SpacePoints total;
1: 164

2: 191

3: 86

4:108



Particle name

| T(45)-only | BG-only [ T(4S)+BG | T(4S)+2xBG |

L3 strips u/v 49.2/36.7 | 260.0/121.7 | 308.1/158.0 562.2/278.8
L3 occupancy u/v [%] 0.46/0.34 2.42/1.13 2.87/1.47 5.23/2.59
L3 clusters u/v 11.8/11.8 39.0/37.9 50.3/49.3 87.0/86.1
L3 SpacePoints 26.1 233.9 318.0 791.0
L4 strips u/v 39.4/29.1 | 120.3/61.2 | 159.1/90.1 277.8/150.6
L4 occupancy u/v [%] 0.17/0.19 0.52/0.40 0.69/0.59 1.21/0.98
L4 clusters u/v 12.7/12.6 29.9/26.7 42.5/39.2 71.8/65.3
L4 SpacePoints 22.5 100.5 143.1 320.4
L5 strips u/v 37.3/28.5 | 122.7/67.2 | 160.1/95.8 282.7/162.9
L5 occupancy u/v [%] 0.10/0.12 0.33/0.27 0.43/0.39 0.77/0.66
L5 clusters u/v 123/12.1 35.0/30.5 47.3/42.7 82.0/72.9
L5 SpacePoints 19.2 99.3 1523 299.3
L6 strips u/v 38.3/28.6 | 134.6/76.8 | 172.9/105.4 307.1/182.0
L6 occupancy u/v [%] 0.06/0.07 0.22/0.19 0.28/0.26 0.50/0.44
L6 clusters u/v 12.4/12.2 | 42.1/36.3 | 54.4/485 06.2/84.5
L6 SpacePoints 17.0 100.8 127.9 283.1
Total strips u/v 164.3/122.8 | 637.6/326.8 | 800.3/449.3 | 1429.8/774.4
Total occupancy u/v[%] | 0.12/0.14 | 0.48/0.37 0.61/0.51 1.08/0.88
Total clusters u/v 49.2/48.7 | 146.0/131.3 | 194.4/179.6 | 337.1/308.9
Total SpacePoints 84.8 534.6 21.3 1693.8

able 3.2.: Mean number of clusters and SpacePoints per Layer (L3-L6) and total of relevant

ases - taken from a MC sample of 30,000 T(4S) events described in Section 11.1.

Looks like mostly BKG, but consider
the fact, that the Y(4S) decays have
probably a higher variance.

Layer 3 is worse than the others, but
only ~ x 2.

Plot from Jakob’s thesis
draft.

Ghost hits dominate!

#Cluster u ~200, #SpacePoint ~800
But keep in mind, that this varies!
See next page

Only O(10%) of SpacePoints come
from Signal.



Summary

e Given, that Felix and me started to work on the VXD tracking code only this week, I’'m fairly happy
about the amount of things we have already understood and worked on.



