
Status
TrackFinderVXDCellOMat

Slide from last F2F by Jakob
Jakob is currently visiting
us in Karlsruhe.

At the last F2F tracking
meeting, we agreed, that
KA helps
opportunistically in the
VXD tracking by
attacking the later steps,
while Pisa works on the
earlier steps and Stefano
Spataro works on the
Sector Map set up.

I’m currently working on
Step 4 (and plant to work
on 5).

Felix is trying to
understand the stuff in
step 2, 3

KarlsruhePisa + Stefano

Status
● There are working modules for step 4 in the Track Finder, but

○ it was difficult to find a good starting point to understand them,
○ their time consumption in a relevant setting was considerable.

● My impression was, that
○ part of the problem was the fact, that a very complicated

Object, the SpTcNetwork (SpacePoint Track Candidate
Network) was the communicating object on the DataStore,

○ enormous amounts of debug output was partially put in

functions, of which it wasn’t clear, that they are not doing
anything with respect to the algorithm.

Example

This is the DataStore object for module to
module communication.

The comment for this object gives only
redundant information.

Complicated Network
Container object, that
will use algorithm
objects, that are given
to it to perform stuff,
e.g. the DataStore
object is responsible
for the execution of
the algorithm.
→ Try putting simple
stuff on the DataStore,
so one can start
somewhere to
understand the code.

Rewrite of Step 4
● What is really needed by Hopfield/Greedy from the SPTCNetworkProduce?

○ A list of which track is in conflict with which other track!

○ Perhaps something as simple as the
OverlapNetwork

How is the OverlapNetwork filled?
● With the

SVDOverlapChecker
module:

Creation of the
actual overlapMatrix
in a separate object.

I’m not sure, if this algorithm is reasonable for PXD
based SpacePoints, as there are typically more
PXD clusters and SpacePointTrackCandidates.

From the
OverlapMatrixCreator.

Main Goal is working Setup for “Round1”
● Use the TrackFinderVXDCellOMat for SVD only track finding;
● Do either/or

○ Extrapolate to PXD and add all hits in the proximity, e.g. “Region of Interest” to the track and
let the DAF decide, which of the PXD hits should really be taken up by the track;

○ Use a Combinatorial Kalman Filter to extrapolate to the PXD;

In any case for this simple idea, we don’t need the XXXOverlapChecker (an

OverlapCheckerModule exists already, checking for the whole detector, if there are any
overlaps) to work with PXD hits from the start;

Performance?
● Using a slightly modified

tracking/vxdCaTracking/extendedExamples/secMapGen/testVXDTFRelatedModules.py
I can get the following
time consumptions for the
modules:

[
20 muons per event;
0.1 < p < 0.145
60 < theta < 85
0 < phi < 90
]
(fairly harsh, see next slides)

If the output from the SVDOverlapChecker is as useful for the Hopfield Network
as the SPTCNetwork, we have a substantial improvement in CPU resource
usage.
Hopfield itself (not shown) is as well bad, but can fairly easily be improved
(matrix library). Remaining to be attacked is the SegmentNetworkProducer,
that depends strongly on the sector map, could be reduced perhaps with more
passes... , Eugenio’s, Stefano’s,...(?) work

Random event, e.g.:
549 SpacePoints total;
1: 164
2: 191
3: 86
4: 108

Looks like mostly BKG, but consider
the fact, that the Y(4S) decays have
probably a higher variance.

Layer 3 is worse than the others, but
only ~ x 2.

Ghost hits dominate!
#Cluster u ~200, #SpacePoint ~800
But keep in mind, that this varies!
See next page

Only O(10%) of SpacePoints come
from Signal.

Plot from Jakob’s thesis
draft.

Summary
● Given, that Felix and me started to work on the VXD tracking code only this week, I’m fairly happy

about the amount of things we have already understood and worked on.

