X-ray Standing Wave Investigation of Lipid Layers

Data evaluation software for X-ray standing waves investigation of element-specific density profiles in biomembranes

Egor Marin

Moscow Institute of Physics and Technology 8.09.2016, DESY Summerstudents program (supervisor: Dmitri Novikov, FS-PEX)

X-ray standing wave

- > X rays (monochromatic, collimated)
- > Periodic structure
- > Bragg reflection

X-ray standing wave

- > X rays (monochromatic, collimated)
- > Periodic structure
- > Bragg reflection

X-ray standing wave fluorescence

We do know the standing wave!

> Reflectivity measurements → ML characteristics
> ML characteristics → standing wave

> 2D-landscape: angle + coordinate

Sample: lipid bilayers

Model fluorescence yield curve

- Known standing wave + model distribution = model curve
- > Complex model → non-linear least-squares fitting

$$\rho(z,\theta) = c \cdot \exp\left(-\frac{(z-z_0)^2}{2\sigma^2}\right) + k\theta$$

Software: Python 2, 3 + least-squares fitting

- > Levenberg-Marquardt algorithm
- > Python: Imfit, scipy.optimize
- > Chi-square target function

$$\chi^2 = \frac{1}{L-p} \sum_{\theta_{min}}^{\theta_{max}} \left(\frac{I_{model} - I_{obs}}{\Delta_{obs}} \right)$$

Model fluorescence yield curve: bimodal distribution

- > Lipid bilayers → bimodal distribution
- > Fitting algorithm reliably detects bimodal case

Real experimental data (ESRF ID10)

Dataset	$z_{0,fit}$	σ_{fit}	χ^2	R
$SGC_highhum_K$	36	8.0	0.026	0.046
PEG_highhum_P, 2-fit	23, 96	8.7, 9.4	0.028	0.043
PEG_highhum_P, 1-fit	60	13.0	0.030	0.046

Real experimental data (ESRF ID10)

Real experimental data (ESRF ID10)

