# Hit Time Calibration using Beam Interface Information

**Summer Project Report** 

Magnus Haughey FLC Group Meeting, 5.9.2016





#### **Project aims**

Conversion of hit time measurements in TDC to real time values (ns)

- > Channel wise calibration
- Implement this functionality in the online monitor for the AHCAL



# ILC & ILD

- International Linear Collider (ILC) – project for future lepton collider
- > Electron-positron collider
- Collision energy of 500 GeV, upgradable to 1 TeV



International Large Detector (ILD) – one of two detector concepts for ILC

![](_page_2_Picture_6.jpeg)

- Detector for particle flow reconstruction: tracker providing very good momentum resolution with low material budget, highly granular calorimeters
- Analog Hadronic Calorimeter (AHCAL) is one of the hadronic calorimeter options for ILD

![](_page_2_Picture_10.jpeg)

#### **Analog Hadronic Calorimeter**

- Highly granular calorimeter developed by the CALICE collaboration
- Physics principles demonstrated by physics prototype
- > Technological prototype stage, exploring:
  - Scalability of AHCAL
  - Capability to be mass produced
  - Integration of electronics into layers of the calorimeter

![](_page_3_Picture_7.jpeg)

# May 2016 Testbeam

- 4<sup>th</sup> 9<sup>th</sup> May testbeam with 'big' modules
  - 2 x 2 HBU layers
  - 4 layers
- Focus on MIP calibration & TDC calibration
- Beam Interface (BIF) included in setup
  - External, independent clock
  - Provides absolute time reference for hits
  - Data from BIF forms basis of hit time calibration

![](_page_4_Picture_9.jpeg)

![](_page_4_Figure_10.jpeg)

#### Data used for this project

- Data used from Runs 41145, 41146 & 41175 from May testbeam
  - Combined runs 41145 & 41175 for this study
- Electron data
- Tile coordinates I, J & K identify position of hit in AHCAL
- For May 2016 setup:
  - I, J ∈ [1, 24]
  - K ∈ [1, 4]

![](_page_5_Picture_8.jpeg)

![](_page_5_Picture_9.jpeg)

## **TDC Calibration**

- Time digital conversion (TDC) used to measure time of hit in AHCAL
- Time resolution important for AHCAL
  - Separation of events
  - Identification of jets
- One method is to correlate hit time data from AHCAL with information from BIF
- C++ programs written to perform analysis of hit time data from AHCAL and BIF
  - Make correlation plots of hit time in AHCAL & BIF data
  - Perform linear fit to data, record fit parameters

  - Plot spectrum of (Hit time (ns) BIF time)

![](_page_6_Picture_11.jpeg)

![](_page_7_Figure_1.jpeg)

- Channel by channel separation; labelled by
  - Tile coordinates (I, J, K)
  - Bunch crossing ID (BXID)
- Channels with >1000 entries used for further analysis
  - Combining runs for more statistics

![](_page_7_Picture_8.jpeg)

![](_page_8_Figure_1.jpeg)

- > 1 MHz DESY beam structure
- Miscorrelations due to ASIC missing trigger but SiPM recorded later events

![](_page_8_Picture_5.jpeg)

![](_page_9_Figure_1.jpeg)

- > 1 MHz DESY beam structure
- Miscorrelations due to ASIC missing trigger but SiPM recorded later events
- Miscorrelations due to BIF missing trigger, ASIC triggering on earlier particle

![](_page_9_Picture_6.jpeg)

![](_page_10_Figure_1.jpeg)

- > 1 MHz DESY beam structure
- Miscorrelations due to ASIC missing trigger but SiPM recorded later events
- Miscorrelations due to BIF missing trigger, ASIC triggering on earlier particle
- Saturation & validation gap effect
  - Data ignored in further analysis

![](_page_10_Picture_8.jpeg)

## **Fitting the Data**

![](_page_11_Figure_1.jpeg)

- Straight line fitted to data for each channel, fit parameters recorded
- > For this channel:
  - x<sup>2</sup> / ndf = 2.652
  - Offset = 947.541(±2.675) ns
  - Slope = 0.700(±0.001) TDC/ns
- Line fitted in range [500, 3500] ns
- Outliers caused by miscorrelations

![](_page_11_Picture_9.jpeg)

#### **Fitting the Data**

![](_page_12_Figure_1.jpeg)

#### **Conversion from TDC to ns**

Each hit in AHCAL converted from TDC to ns according to tile

coordinates & BXID

- Plots of Hit time (ns) BIF time) created for each channel
- Gaussian curve fitted to data, fit parameters recorded
- For this channel:
  - Mean = 0.38 ns
  - σ = 7.12 ns

![](_page_13_Figure_8.jpeg)

![](_page_13_Picture_9.jpeg)

#### **Conversion from TDC to ns**

- Gaussian fitted between {mean ± rms} of distributions
- ~200 channels with σ < 20 ns of channels analysed

![](_page_14_Figure_3.jpeg)

![](_page_14_Figure_4.jpeg)

#### **Identification of poor channels**

![](_page_15_Figure_1.jpeg)

- Some channels produce smeared/chaotic plots
- Indicates possible hardware faults in AHCAL
  - SiPM continuously triggering
- Miscorrelations may be responsible
- Benefit from more statistics

(ahc\_hitTime – bif\_Time) plot for channels: [I=12; J=18; K=1; BXID=1] – top; [I=13; J=16; K=3; BXID=0] – bottom

![](_page_15_Picture_8.jpeg)

# Distribution of $\sigma$ between layers

![](_page_16_Figure_1.jpeg)

Written programs to perform analysis of hit time in AHCAL and external BIF

- Correlation of AHCAL & BIF hit time plotted
- Linear fits performed, slope & offset recorded
- AHCAL hit time converted from TDC —> ns, time difference plotted
- > Analysis of good and bad channels within AHCAL

![](_page_17_Picture_6.jpeg)

Written programs to perform analysis of hit time in AHCAL and external BIF

- Correlation of AHCAL & BIF hit time plotted
- Linear fits performed, slope & offset recorded
- AHCAL hit time converted from TDC  $\longrightarrow$  ns, time difference plotted
- Analysis of good and bad channels within AHCAL

![](_page_18_Figure_6.jpeg)

- Hit time calibration extended to include memory cell calibration, requires further development
- Implementation in online monitor for AHCAL

![](_page_18_Picture_9.jpeg)