DESY SUMMER STUDENT PROGRAMME 2016

PRELIMINARY STUDIES ON Y(1S) VISIBLE/INVISIBLE DECAYS AT THE BELLE II EXPERIMENT

Supervisor Gianluca Inguglia Martina Ferrillo, University of Naples "Federico II" Vladimir Macko, University of Stockholm

1

- Theoretical overview and motivation
- Introduction to the Belle II experiment
- Feasibility study of Y(nS) visible/invisible decays
 Bele I
 Conclusions

STANDARD MODEL OF PARTICLE PHYSICS (SM)

Leading Model in the Last ~50 years

3 particles families and generations

 $SU(3)_{c} \times SU(2)_{L} \times U(1)_{r} \longrightarrow Higgs boson$

25 free parameters

Is SM sufficient for fundamental description of nature?

Many evidences for new physics...

- Neutrinos non-zero masses
- Hierarchy problem

. . .

Dark Matter and Dark Energy

MOTIVATION FOR DARK MATTER (DM) SEARCH

M. Ferrillo, V. Macko - DESY Summer Student Final Presentation - 08/09/2016

MOTIVATION FOR DARK MATTER (DM) SEARCH

DM STUDIES AT THE BELLE II EXPERIMENT

DM STUDIES AT THE BELLE II EXPERIMENT

$$\frac{BR(\Upsilon(1S) \to \nu\bar{\nu})}{BR(\Upsilon(1S) \to e^+e^-)} = \frac{27G^2 M_{\Upsilon(1S)}^4}{64\pi^2 \alpha^2} (-1 + \frac{4}{3}\sin^2\theta_W)^2 = 4.14 \times 10^{-4}$$

where $BR(\Upsilon(1S) \rightarrow \nu \bar{\nu}) \sim 9.9 \times 10^{-6}$

Low mass DM particles might play a role in invisible decays of Y(1S) [Phys. Rev. D 80, 115019, 2009]

In absence of any enhancement, the SM process $\Upsilon(1S) \rightarrow \nu \bar{\nu}$ could be observed

 $\Upsilon(1S) \rightarrow invisible$:

Any signal would be seen as an excess of events in the recoil mass distribution (M_r) of the di-pion system, equivalent to the mass of the Y(1S) [9.460 GeV/c²]

$$M_r^2 = s + M_{\pi^+\pi^-}^2 - 2E_{\pi^+\pi^-}^{cms}\sqrt{s}$$

$\Upsilon(4S),\,\Upsilon(3S)\,$ decays at Belle I

SIGNAL&BACKGROUND CONSIDERATIONS

TRIGGER EFFICIENCY CONSIDERATIONS

NEED FOR A DEDICATED TRIGGER ?

... since we are looking for two low momentum pions

constraints on π **-** π **opening angle**

10

$\Upsilon(4S) \to \pi^+ \pi^- \Upsilon(1S), \,\Upsilon(1S) \to \chi \bar{\chi}$

DECAYS AT BELLE II

11

100k simulated

$$e^+e^- \to \gamma_{ISR}\Upsilon(3S), \ \Upsilon(3S) \to \pi^+\pi^-\Upsilon(1S), \ \Upsilon(1S) \to \chi\bar{\chi}$$
 decays at Belle II

CONCLUSIONS

In 2017 Belle II will start collecting data at various center of mass energies, aiming to collect an integrated luminosity of **50 ab**⁻¹

 \mathbf{x}

*

Direct detection of low-mass DM is very difficult. This motivates feasibility studies @Bellell of decays where DM might show up:

 $\longrightarrow \Upsilon(4S) \to \pi^+ \pi^- \Upsilon(1S) \to \chi \bar{\chi}$

 $\rightarrow e^+e^- \rightarrow \gamma_{ISR}\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(1S) \rightarrow \chi\bar{\chi}$

We studied acceptance, reconstruction and trigger efficiencies for the two channels + control samples. The total efficiency for each channel is >~14%

According to obtained results, Belle II will be *able* to search for DM in invisible $\Upsilon(1S)$ decays, using di-pion transitions and ISR techniques.

, Observing a signal would be a clear sign of new physics ! "

THANK YOU FOR YOUR ATTENTION !

 $e^+e^- \to \gamma_{ISR}\Upsilon(3S) \to \pi^+\pi^-\Upsilon(1S) \to \mu^+\mu^-$

DECAYS AT BELLE

100k simulated

$$e^+e^- \to \gamma_{ISR}\Upsilon(3S) \to \pi^+\pi^-\Upsilon(1S) \to \mu^+\mu^-$$

DECAYS AT BELLE I

100k simulated

$\Upsilon(4S) \to \pi^+ \pi^- \Upsilon(1S) \to \mu^+ \mu^-$

DECAYS AT BELLE I

100k simulated

 $\Upsilon(4S) \to \pi^+ \pi^- \Upsilon(1S) \to \mu^+ \mu^-$

DECAYS AT BELLE I

#ev

~43%

~22%

100k simulated

INVISIBLE DECAYS AT BELLE II

100k simulated

