

Higgs boson production in association with a top anti-top quark pair with $H \rightarrow b\bar{b}$ in $\sqrt{s} = 13$ TeV

Sotiroulla Konstantinou

Supervisor C Diez Pardos

Thursday 8th September, 2016

Motivation

Final State

Background Processes

- 2 Compact Muon Solenoid
- **3** Kinematics

Fat Jets

Substructure Analysis

b tagging identification

- 4 Signal vs Background Event Yields
- 5 Studies on *tTH* production

6 Backup

Substructure Analysis

Introduction

- July 2012: Discovery of a new particle by the CMS and ATLAS Collaborations
 - Measured properties: Consistent with the Higgs Boson predicted by the SM
 - Important Discovery: Understanding of the Higgs mechanism
- Interesting measurement: Yukawa coupling of the Higgs Boson to the top quark
 - Top guark: Could play a special role in the context of the electroweak symmetry breaking due to its large mass
 - Higgs boson: Cannot decay to top quarks
 - Yukawa coupling: directly measured at the process of Higgs production in association with a top anti-top pair
 - $t\bar{t}H$ cross section ($\sqrt{s} = 13 TeV$, $M_H = 125 GeV$) $\sigma = 0.5 pb$ (NLO) (Not observed yet)

Final State

- Higgs Decay: Dominant channel $H \rightarrow b\bar{b}(\sim 58\%)$
- t-quark: $\sim 100\%$ to Wb
 - leptonic decay: low cross section $(\sim 6\%)$ but cleanest final state

Higgs decay modes

- Four b-jets
- Two high p_T opposite signed isolated leptons

Most important background: $t\bar{t}$ +jets production

- Focus on Higgs boson with high p_T : Study improvement in sensitivity
- Study properties of merged jets

Compact Muon Solenoid - CMS

- Tracker Detector
- Electromagnetic Calorimeter
- Hadronic Calorimeter
- Muon Detector

Neutrino detection: Missing transverse Energy

Data used in the analysis

- p-p collision data collected by the CMS detector
- $\sqrt{s} = 13$ TeV
- luminosity: 2.7 fb⁻¹

Characterizing the process

Selection:

• 2 leptons

•
$$\geq$$
 2 jets, \geq 1 b-jets

 "Boosted regime": p_T^{t\bar{t}} > 200 GeV

Expected and observed number of events

Sample	2J, 1b Tag	3J, 2b Tags	3J, 3b Tags	\geq 4J, 2bTags	\geq 4J, 3b Tags	\geq 4 J, 4 b Tags	Boosted
Data	21768	3017	110	2852	308	27	1634
tŦH	26.1	1.3	0.4	8.8	4.0	1.2	5.7
Total Backgr	25374.0	3257.6	91.3	3647.9	310.2	26.3	1767.3
$signal/bckg(x10^{-2})$	0.10	0.04	0.44	0.24	1.29	4.10	0.32

Properties of boosted objects

Boosted Objects: Pass their momentum to the decay products

- Jets: small ΔR distance
- Products reconstructed to one big jet \rightarrow Fat Jet

•
$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 1.5$$

	Motivation	Compact Muon Solenoid	Kinematics 00000000	Signal vs Background Event Yields	Studies on <i>ttH</i> production	Backup ⊖
Fat Jets						

Properties of boosted objects

- Boosted Objects: Pass their momentum to the decay products
 - Jets: small ΔR distance
 - Products reconstructed to one big jet \rightarrow Fat Jet
 - $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 1.5$

Fat jets P_T

• Good description of the data

Fat jets - substructure

To identify if it's a Higgs boson or something else, we study the substructure of the fat jets Algorithms: Look for the hard jets inside the fat jets and remove soft radiation <u>Filter Jets</u>

• Reconstruction of three subjets inside the main fat jet

Soft Drop Jets

- Reconstruction of two subjets inside the main fat jet
- Removes soft wide-angle radiation from a jet

 ΔR - FatJet

ΔR (filter1, fat)

 ΔR (filter2, fat)

ΔR (Soft Drop1, fat)

 ΔR (Soft Drop2, fat)

Jet1 - Jet2

filter Jets p_T^{12}

Mass (2Jets, 1 b-Tagged)

filter Jets

filter - boosted regime

SoftDrop Jets

SoftDrop - boosted regime

Kinematics and boosted Events Analysis

- Discriminate between b-jets from light jets
 - Output ranging from 0 to 1 high discriminator value ⇒ more likely it is to be a real b jet

filter hightest b-tagged jet

SoftDrop highest b-tagged jet

- Discriminate between b-jets from light jets
 - Output ranging from 0 to 1 high discriminator value ⇒ more likely it is to be a real b jet

filter 2nd hightest b-tagged jet

SoftDrop 2nd highest b-tagged jet

Results

Observed and expected limit

No s	ystematic	uncertainties	included
------	-----------	---------------	----------

	Observed	Expected	1σ	2σ
	10.1	13.3	[9.5,18.6]	[7.1,25.0]
Boosted	13.1	23.0	[16 4,32 4]	[12.2,43.6]
Kinematics and boosted Events Analysis			17 of 21	

Prospects with Luminosity 100 fb^{-1}

filter 2nd hightest b-tagged jet

Kinematics an

filter 2nd highest b-tagged jet - boosted

Expected limit No systematic uncertainties included

		Expected	1σ	2σ	
		2.1	[1.5,3.0]	[1.1,3.9]	
	Boosted	3.6	[2.6,5.0]	[2.0,6.7]	
d boosted Events Analysis			18 of 21		

Summary and Outlook

- I perform the first studies of the sensitivity of $t\bar{t}H$ in the boosted regime
- Comparison of two algorithms to identify decays of boosted Higgs to $bar{b}$
- Identify which variables have discriminant power
- First preliminary limits using boosted Higgs boson reconstruction
 - Next step: add systematic uncertainties
- This information can be included in the final analysis

Outline	Motivation	Compact Muon Solenoid	Signal vs Background Event Yields	Studies on <i>ttH</i> production	Backup

Backup

Fat jets - substructure

To identify if it's a Higgs boson or something else, we study the substructure of the fat jets <u>Filter Jets</u>

• Reconstruction of the subjets inside the main fat jet

Soft Drop Jets

- Removes soft wide-angle radiation from a jet
- Jet of radius R_o with two constituents $(p_T^1 > p_T^2)$

$$\frac{\min(P_T^1, P_T^2)}{P_T^1 + P_T^2} > z_{cut} \left(\frac{\Delta R_{12}}{R_o}\right)^{\beta} \tag{1}$$

- True: *j*_{th} jet is the final soft drop jet
- False: j=j1
- Parameters z, β:
 - $z_{cut} = 0.1, \beta = 0.0 \rightarrow Default$
 - $z_{cut} = 0.2, \beta = 1.0 \rightarrow Z2B1$