

Influence of polydispersity on the structure of colloidal crystals revealed by X-ray diffraction

Maslov Mikhail, Moscow Institute of Physics and Technology

Supervisor: Ivan Vartaniants

МФТИ

Colloidal structures

Typical size: from 1 to 1000 nanometers. Different colors are caused by polydispersity.

Colloidal crystals in nature.

Colloidal structures

These crystals are used as photonic band gap materials – *photonic crystals*. Dispersion of particle radius has influence on crystal structure.

SEM image of a colloidal crystal film.

Jahne-Mieke Meijer. PhD Thesis.

Project aims

- generate two dimensional colloidal crystal lattice
- calculate X-ray diffraction pattern
- analyze dispersion of particle radius influence on Bragg peak width

One-dimensional case

Ideal hexagonal lattice

 generating ideal hexagonal crystal lattice (some particles may intersect)

Monte Carlo method

reassembling particles using Monte Carlo (MC) method

- Choosing random particle and random movement.
 - Counting system energy before and after shift, using Lennard-Jones potential.

$$U_{L-J} = \varepsilon \left[\left(\frac{r_0}{r} \right)^{12} + 2 \left(\frac{r_0}{r} \right)^6 \right]$$

- III. Calculating difference in energy.
- IV. Accepting or declining the movement assuming Boltzmann statistics.

Calculation of X-ray diffraction

generating diffraction pattern using two-dimensional Fourier transform (with flat Ewald sphere approximation)

You may notice: Bragg peaks also have hexagonal structure!

Radial cross section

calculation of radial cross section of the structure factor for different dispersions (σ)

Williamson-Hall method

Williamson-Hall plot

Slope and intersections in radial case

calculating slope and intersections in radial direction

 $\gamma = \frac{2\pi}{\langle L \rangle_R} + \frac{\Delta d}{\langle d \rangle} \times q_{rad}$ $\langle L \rangle_R$ - mean size of colloidal crystal domain in radial direction

Slope and intersections in azimuthal case

calculating slope and intersections in azimuthal direction

 $\gamma = \frac{2\pi}{\langle L \rangle_A} + \tan \alpha \times q_{rad} \quad \langle L \rangle_A$ - mean size of colloidal crystal domain in azimuthal direction

Summary and conclusions

What have we done?

- colloidal crystal lattice generation algorithm
- X-ray diffraction calculation algorithm
- application Williamson-Hall approach for our model

What have we obtained?

- \clubsuit colloid particles domain size behavior in dependence on dispersion of particle radius (σ)
- * increasement of fluctuation of interparticle distances in dependence on dispersion of particle radius (σ)
- angular domain disorientation dependence on dispersion of particle radius (σ)

Acknowledgements

Coherent X-ray Scattering and Imaging Group at DESY

- I. Vartanyants
- O. Gorobtsov
- A. Shabalin

- E. Weckert
- D. Dzhigaev
- M. Rose

Special thanks to Ivan Zaluzhnyy and Sergey Lazarev!

And all DESY Summer Studentship organizers!

Three-dimensional case

we managed to get all the scripts working but it takes a lot of time to get results we need, because algorithm can't be parallelised

