The impacts of the muon spoiler background on the ILC detector performance

Jonas Glombitza, RWTH Aachen

Summer student in the ATLAS group Supervisor: Anne Schuetz, Dr. Marcel Stanitzki Hamburg, 8.9.2016

The ILC – International Linear Collider

> Planned e-/e+ collider in Kitakami mountains (Japan) e+ bunch **Damping Rings IR & detectors** compressor e- source e+ source e-bunch positron 2 km compressor main linac 11 km central region 5 km electron main linac 11 km 2 km > 31 km length

- > Center of mass energy 500 GeV
- > Leptonic collisions
 - Small detector occupancy
 - Electro weak interaction

> Very small background in comparison to hadron colliders

The SiD – Silicon Detector

- > Compact Silicon Detector
 - Every subdetector has silicon cells
- > 7 subdetectors
 - ECAL, HCAL, Tracker, VertexTracker, MuonChamber, BeamCal, LumiCal
- > Height: ~14 m Length: ~12 m
- > Weight: 10 kt
- > Solenoid field: ~ 5 T

From LHC to ILC

LHC <µ> = 30-40

From LHC to ILC

> Moving from ~ 30-40 interactions per crossing \rightarrow to 1 event per train (~1300 crossings)

> Aim of every experiment is a high signal/background ratio

Muon shielding – Scenario A

Look from above on the beam tunnel

18.5kG

Muon shielding – Scenario B

Look from above on the beam tunnel

Install 5 m thick copper wall

- >Does the only-spoiler scenario provide an adequate muon shielding?
 - Safety issues
 - Costs

Look from above on the beam tunnel

SiD - without muons

SiD - after incoming muons

SiD - after incoming muons

Multiple cell hits

>Analysis results:

- » Multiple cell hits
- » Averaged cell hits
- » Spatial muon distribution
- » Energy distribution

Multiple cell hits – Muon Chamber

Multiple cell hits on MuonEndcap+

Multiple cell hits - Tracker

Multiple cell hits on SiTrackerBarrel

Multiple cell hits - Tracker

Multiple cell hits on SiTrackerBarrel

Number of hits in the SiD per train - Spoiler

Hit positions MuonEndcaps – Spoiler scenario

Hit positions MuonEndcaps - Spoiler

Number of hits in the SiD per train - Spoiler

Number of hits in the SiD per train - Spoiler

Hits positions on muon endcaps – 5 trains

Defocussing difference

> Wider angular distribution

- > The wall is defocussing the muons via multiple scattering
 - The muon hits are more homogeneous distributed in the SiD

Shifting of the incoming muons

- Direction

 \succ

Summary + Conclusion

> I investigated in different impacts of the muon spoiler background

- Study on the "Spoiler" and "Spoiler + Wall" scenario
- > Spoiler + Wall has better muon suppression
 - For the Tracker a difference of factor ~ 5 was found
 - Will be even higher because in the only-spoiler scenario even more muons in absolute numbers will penetrate in the SiD
- > For final statement, higher statistic is needed
- > Alignment of tracker with high energy muons
 - Clear horizontal tracks through tracker
- > Results will be used for ILC accelerator design decisions
 - Scientific paper will include my results

BACKUP - SLIDES

ASSOCIATION

Jonas Glombitza

The impacts of the muon spoiler background on the ILC detector performance Supervisor: Anne Schuetz, Dr. Marcel Stanitzki Hamburg, 6.9.2016

Energy distribution of the muons

Distribution of initial muon energies

Energy distribution of the muons

Distribution of initial muon energies

Energy distribution of the muons

Distribution of initial muon energies

Summer student talk

Jonas Glombitza

The impacts of the muon spoiler background on the ILC detector performance Supervisor: Anne Schuetz, Dr. Marcel Stanitzki Hamburg, 6.9.2016

The ILC – International Linear Collider

- > Center of mass energy 500 GeV
- > Leptonic collisions
 - Small detector occupancy
 - Electro weak interaction

> Very small background in comparison to hadron colliders

SiTrackerEndcap

MuonEndcap hit time contribution electron beam

Electron vs Positron

Multiple cell hits SiTrackerBarrel

Vertical angle distribution

Inital vertical angles

