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Outline

● Storage-ring based light source performance parameters.
– Transverse brightness and coherence:  The MBA lattice.

● The landscape of storage-ring based light sources: immediate
future.

● Enabling & Enabled Technologies.

●How can we go further ? The next generation.

●An exercise: preliminary design for a diffraction limited source  
in the MAX IV 3 GeV ring tunnel.

● Summary and Conclusions.
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SR-based Light Source Performance Parameters
why do we build them ?

Intensity and spectral range Brilliance/Brightness
Flux density

Time structure
Repetition Rate
Pulse Length

Polarization

Stability

Coherence

Reliability

Multi-user capacity
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Spectral Brightness
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Photon Phase Space

In an ideal optical transport system, brightness is conserved – a property of the source.
Several derived quantities are often used

Density in photon phase space

Central Brightness Angular density of flux

H.Wiedemann, Part.Acc.Phys, Vol II
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Transverse Coherence and Brightness
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Coherence of electromagnetic perturbations at two points on a plane 
perpendicular to the direction of propagation.

Relates to the capability to generate interference patterns

Coherent Flux:

Harder for short wavelengths

Maximum  Brightness (diffraction limited source):
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Brightness from a real beam
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Convolute the angular distribution of radiation from a single electron 
with the electron beam transverse spatial and angular distributions

For the n-th harmonic of an undulator of length L

Spectral flux (E,I,B,n)

Effective source size and divergence

Electron beam
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Diffraction Limit: xxx  e-beam emittance
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Brightness Evolution

From: Bob Hettel, DLSR design and plans: an international review, JSR (2014) 21 843-855
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Damping/Excitation of 
Transverse Oscillations Oscillations

Discrete photon emission changes momentum along the direction of 
propagation If this happens in a dispersive region of the magnet lattice, a 
transverse (betatron) oscillation will be excited.

Momentum is regained at the RF cavity only along the longitudinal direction. 
This causes a reduction of the particle angles (damping).

Both effects together lead to an equilibrium state that define the transverse 
beam dimension and angular spread, i.e., the emittance.
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Many Possible Lattice Designs
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bending Magnet

one or more quadrupoles

Double Bend Achromat Theoretical Minimum Emittance
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3rd Generation Lattice Designs   1990’ s & 2000’ s

Diamond - 2006
DBA - 3 GeV - 562 m - 2.7 nmrad

Soleil - 2006
DBA – 2.75 GeV – 354 m – 3.7 nmrad 

ALS - 1993
TBA – 1.5 GeV – 197 m - 3.5 nmrad 

Pictures: PAC/EPAC

ESRF- 1993
DBA – 6 GeV – 844 m – 6 nmrad
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The Multi-Bend Achromat Lattice
Basic concepts date back to the 90’ s:

 NIM-‐A 335 1993, Einfeld et al. “A modified QBA optics for low emittance  rings”
 EPAC’94 Joho et al. Design of a Swiss Light Source
 PAC’95, Einfeld et al.: Design of a Diffraction Limited Light Source

Along 2000’s:

 Tools available for non-linear optimization of such lattices.
 Engineering issues were tackled. 
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The Quest for higher brightness
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 1970´s - 1980´s
 1990´s - 2014
 MAX IV
 Under Construction/Planned

ALS-U
Sirius

APS-U

HEPS

SLS-2

ESRF-II

PETRA IV Tau-USR

Spring 8-II

ELETTRA II

DIAMOND II
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The (immediate) Future Landscape of SR-based
Light Sources

Ꙩ BESSY VSR 

Ꙩ ELETTRA II
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MAX IV: 3 GeV, 528 m, 330 pmrad

7BA

Compact MagnetsCircular, copper NEG-coated chambers100 MHZ RF
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MAX IV 3 GeV Ring Commissioning Results
Up to 198 mA in multibunch mode >6 A.h product lifetime*Current> 100 A.h Accumulated Dose

>24 hr top/up at 160 mA
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Sirius: 3 GeV, 528 m, 250 pm.rad

Multipole Kicker
IPAC 16 p. 1405

Permanent Magnet Dipoles with High Field Slice
IPAC 11 p. 931

IPAC 16 p. 3413

Thin heater tapes for in-situ NEG activation
IPAC 15 p. 2744

5 BA with Superbend
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ALS-U: 2 GeV, 200 m, 50 pm.rad
ALS-U proposal, 
April 2016

Stefano de Santis, LER Workshop 2016

9 BA



Matter and Technologies Annual Meeting, DarmstadtJan 2017

APS-U: 6 GeV, 1100 m, 41 pmrad
Hybrid 7 BA, reverse bends

M.Borland, APS-U Forum, October 2016

C.Yao et al, IPAC 2016



The R&D project of HEPS (Test facility of HEPS, HEPS-TF) has been approved and started in 2016, will 
finished in 2018.
The plan of construction has been approved by central government; the construction of HEPS is 
scheduled in 2018
Beijing municipal government will support the construction of Advanced Light Source Test Platform, in 
order to develop the techniques of accelerator and X-ray optics

The constructions of XFEL and ERL in future are also planed in same area.

HEPS, 6 GeV, 1300 m, 60 pm.rad

courtesy Yuhui Dong Hybrid 7 BA
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Arc layout (30°)

Optical functions

rms beam size

 20 m  5 m 

in straight centers

bx by h

x y he

courtesy Andreas Streun
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Storage ring upgrade: old  new
 Lattice type: 12TBA  127-BA

 longitudinal gradient bend / anti-bend cell

 Emittance: 5 nm  150 pm(incl. IBS)

 Circumference:           288 m  290.4 m

 Periodicity:  3  12

 Straight sections: 
311 m, 37 m, 64 m  125½ m

 3 Superbends:              2.9 T  6.0 T

 maintained: 
 2.4 GeV beam energy, 400 mA current

 off-axis top-up injection

courtesy Andreas Streun
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PETRA IV – Decoding the Complexity of Nature

PETRA IV  Parameter

Energy 6 GeV          (4.5 – 6 GeV)

Current 100 mA            (100 – 200 mA)

Number of bunches ~ 1000

Emittance   horz. 10 pm rad      (10 – 30 pm rad)

vert. 10 pm rad      (10 – 30 pm rad)

Bunch length ~ 100 ps

Parameters and parameter range:

PETRA IV – The ultimate 3D process 

microscope has the potential:

• to address individual organelles in living cells

and follow metabolism pathways with 

elemental and molecular specificity

• to image the chemistry inside a battery down 

the atomic level and understand their aging 

processes

• to map interfaces in functional materials, e.g., 

for a thorough understanding of frictional 

processes on the way to enhance energy 

efficiency and reduce emissions

• to study the synthesis of novel materials and 

catalytic reactions inside a chemical reactor 

on all relevant length scales 

• to image individual grains in novel materials 

and alloys under working condition

courtesy R.Wanzenberg

2300 m circumference
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 Started to investigate two different lattice types

1. Based on the ESRF-HMBA cell

2. Based on 4D-phase space exchange and MBAs with non-interleaved sextupoles

Lattices Investigated for the PETRA Upgrade

1. Lattice based on HMBA Cells
 Arcs: 9 HMBAs cells to build a 45° arc 

 8 identical arcs

 Straight sections: FODO cells

Horz. emittance of HMBA-based ring

is 12 pm·rad at 6 GeV 

Cell not yet optimized,

(small dynamic aperture) 

2. 4D-phase space exchange and MBAs
 arc cells with non interleaved sextupoles

 Undulator section, preliminary version with HMBA 

Emittance ~ 20/20 pm 

(5 GeV, wigglers not yet included)

Undulator cell not yet optimized 

courtesy R.Wanzenberg



DII-DTBA

Diamond-II

The main lattice under study is a “double triple-bend-achromat (DTBA)”, 
based on the ESRF hybrid-7BA lattice, and combining the benefits of low 
emittance and a large increase in capacity for insertion device beamlines:  

Study of a Double Triple Bend Achromat (DTBA) Lattice for a 3 GeV Light Source, 
A. Alekou et al., Proc. IPAC 2016, WEPOW044

 Natural emitance ~ 125 pm

 Several existing Bending Magnet and short ID beamlines can convert to full 
Insertion Device beamlines.

 New beamlines can be built without impact on existing beamlines.

courtesy Richard Walker
3 GeV, 562 m, 125 pmrad



"SPring-8-II"
a next step for the cutting-edge hard x-ray light source complex
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> LLRF for on-demand pulse-by-pulse 
injection from SACLA

>  Permanent magnet based dipoles
> Short period undulators with force 

cancellation
> No-perturbation and small-amplitude 

beam injection system
and more (vacuum, monitor, RF etc.).

5 bend achromat lattice
SPring-8-II SPring-8

Energy (GeV) 6 8

Stored current (mA) > 100 100

Effective emittance 
(nmrad)

0.157
~0.1 w/ ID

2.8

Energy spread (%) 0.093 0.109

bx, by @ ID (m) (5.5, 2.2) (31.2, 5.0)> Lower energy, 6 GeV

> Lower hor.&vert. beta-functions 

> Extremely small emittance beam

injection from SACLA linac

> 4 longitudinal gradient bends (LGB)

> No very strong magnets

Q < 60 T/m, Sx < 3,000 T/m2

Development of subsystems on going...

XFEL "SACLA" Storage ring

Courtesy Hitoshi Tanaka



Elettra 2.0

26

Circumference (m) 259.2

Energy (GeV) 2

Number of cells 12

Geometric emittance (nm-rad) 0.250

Horizontal tune 33.10

Vertical tune 9.19

Betatron function in the middle of straights (x, y ) m (9.7,2.8 )

Horizontal natural chromaticity -75

Vertical natural chromaticity -51

Horizontal corrected chromaticity +1

Vertical corrected chromaticity +1

Momentum compaction 3.45e-004

Momentum compaction second order 3.60e-004

Energy loss per turn (no IDs) (keV) 156

Energy spread 6.67e-004

Jx 1.52

Jy 1.00

J 1.48

Horizontal damping time (ms) 14.6

Vertical damping time (ms) 22.2

Longitudinal damping time (ms) 15.0

Dipole field (T) 0.8

Quadrupole gradient in dipole (T/m) <15

Quadrupole gradient (T/m) <50

Sextupole gradient (T/m2) <3500

RF frequency (MHz) 499.654

Beam revolution frequency (MHz) 1.1566

Harmonic number 432

Orbital period (ns) 864.6

Bucket length (ns) 2

Natural bunch length ( mm, ps ) 2.16 , 7.2

Synchrotron frequency (kHz) 6.1

Parameter units Elettra Elettra 2.0
Energy GeV 2 - 2.4 2
Circumference m 259.2 259.2
Horizontal  Emittance pm-rad 7000 @ 2 GeV 230-280
Vertical      Emittance (1% coupling) pm-rad 70 2.5
Beam size @ ID (x,y) m 245 , 14 (1% coupling) 43 , 3
Beam size @ short ID m 350 , 22 (1% coupling) 45 , 3
Beam size @ Bend m 150 , 28 (1% coupling) 17 , 7
Bunch length ps 18 (100 with 3HC) 7  (70- 100 with 3HC )

Energy spread DE/E % 0.08 0.07
Bending angle (per half achromat - 1/24) degree 15 3.6 and 2x5.7
Coherence fraction @ 100 eV % 22 87
Coherence fraction @ 1 keV % 2 38

CDR ready to be presented for 
approval

courtesy Emanuel Karanzoulis
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ESRF EBS, 6 GeV, 844 m, 135 pmrad
courtesy Dieter Einfeld
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29A. Jankowiak, BESSY VSR, 20.01.2017

Courtesy Andreas Jankowiak

• short (ps) and long pulse option

• maintain high average brilliance

 preserve emittance

• TopUp capability

• 0.50 GHz NC (4 x 1 cell,  1.6 MV)

• 1.50 GHz SC (2 x 5 cell, 20.0 MV)

• 1.75 GHz SC (2 x 5 cell, 17.1 MV)

BESSY VSR – Variable Pulse Length Storage Ring (TDS Design)

15 ps

1.7 ps

76 times higher gradient than BESSY II

→ 𝟕𝟔 = 𝟖. 𝟕 shorter bunches



Matter and Technologies Annual Meeting, DarmstadtJan 2017

Enabling & Enabled Technologies

● Compact magnets

● Compact vacuum systems

● Advanced injection schemes – Fast kickers

– On-axis

– Swap-out

– Accumulator Rings

● Bunch lengthening systems (harmonic cavities)

● Advanced insertion devices (round apertures):

– Delta Undulators

– Helical superconducting Undulators
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How was it possible ?

High Brightness

Accelerator 
Physics

New Lattica 
Design (MBA)

New Tools for 
Dynamic Analysis

Accelerator 
Engineering

Compact 
Magnets

Distributed 
Pumping – NEG 

coating

Low Frequency 
RF

Long Bunches
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Compactedness is  the key !

Picture by E. Aldmour
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The Quest for higher brightness
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Beyond MAX IV – exploring future possibilities

●Can the MBA concept be used to design a storage ring 
that provides a bare lattice  emittance    ̴ 10 pm rad 
within the MAX IV 3 GeV ring circumference (528 m) ?   

● If we take the present trend to smaller gaps to a new 
level, and consider that “…when it is necessary that a 
magnetically significant dimension of a magnet is very 
small, a permanent magnet will always produce higher 
fields than an electromagnet”, K. Halbach J.App.Phys
(1985), Vol. 57, N. 1.

●Large scale use of permanent magnet technology 
could play a key role in this development. 
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Current SR Projects using PM Technology 
(for dipole magnets)

●Sirius

●ESRF-II

●Spring 8-II
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Diffraction Limited @ 10 keV within ~ 500 m

Novel Injection 
Schemes

High 
Gradient 

Permanent 
Magnets

NEG  coating  
very small 
apertures

Long(er) 
Bunches

Compact Design – Small Aperture

En
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Beyond MAX IV – an exercise

Existing 7 BA

Future Lattice Candidate – 19 BA
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Parameter Value Unit

Energy 3 GeV

Number of periods 20

Circumference 528 m

Straight section length 5 m

Natural Emittance 16 pm.rad

Natural energy spread 0.09 %

Horizontal Tune 101.2

Vertical Tune 27.28

Natural horizontal chromaticity -100.21

Natural vertical chromaticity -126.1

Momentum compaction 5.30E-05

Beyond MAX IV – an exercise

BH

SDSD SF

QF QF

BH

19-BA lattice in the MAX IV 3 GeV ring tunnel

Lattice design: OPA (A.Streun)
Elegant (M.Borland)
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Beyond MAX IV – an exercise
19-BA lattice in the MAX IV 3 GeV ring tunnel
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19-BA lattice in the MAX IV 3 GeV ring tunnel –
Magnet Parameters

Unit Cell Matching Cell

Length [m] 0.3333 0.16667

Angle [deg] 1 0.5

Field [T] 0.52 0.52

Gradient [T/m] -70.1 -30

Dipoles

QF QM QFE QDE

Length [m] 0.075 0.15 0.1 0.1

Gradient [T/m] 219 183 234 -198

Pole Tip Field [T] 1.2 1 1.29 1.1

Quadrupoles

SF SD

Length [m] 0.1 0.1

Gradient [T/m2] 33592 -19729

Pole Tip Field [T] 1 0.6

Sextupoles

Magnet bore radius = 5.5 mm
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19-BA lattice in the MAX IV 3 GeV ring tunnel -
Dynamic and momentum aperture

Plots by Johan Bengtsson
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Challenges

● Magnet Design (field quality, rad. damage, temp. 
dependence, trim) 

● Light Extraction

● On-axis injection (fast kickers), Swap-out  ?

● Collective effects (incoherent (IBS) and coherent) – More 
lengthening ?

● Low alpha

● Heat load on chambers

● NEG coating of very small aperture chambers

● Mechanical integration

● .......
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High Gradient PM Quadrupole Examples

7 mm bore radius,  285 T/m – Mihara et al, EPAC2004,  Iwashita et al, PAC2003
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Intra Beam Scattering

IBS in the present MAX IV 3 GeV ring

Plot by S.Leemann
MAX-lab Internal Note 201211071
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Calculations by Johan Bengtsson
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Multiple Harmonic Cavities
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Summary and Conclusions
● The international landscape of storage-ring based synchrotron light 

sources is currently undergoing a major change with many new 
projects worldwide promising orders-of-magnitude performance 
improvements.
– Increased control of the time structure will cater for a wide variety of 

user applications 

– Brightness and coherence improvements made possible by  compact 
machine designs will open up new research fields.

● It is time to start asking ourselves: can the quantum jump in 
brightness made possible by the MBA lattice be repeated in the next 
10-15 years ?

● The time may have come  when the benefits of large scale use of 
permanent magnets in storage ring lattices outweigh the risks/costs ? 
This could lead to yet another order-of-magnitude jump in source 
brightness
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Thank You for Your Attention
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– Richard Walker (Diamond)


