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Outline

e Storage-ring based light source performance parameters.
— Transverse brightness and coherence: The MBA lattice.

e The landscape of storage-ring based light sources: immediate
future.

® Enabling & Enabled Technologies.
e How can we go further ? The next generation.

® An exercise: preliminary design for a diffraction limited source
in the MAX IV 3 GeV ring tunnel.

e Summary and Conclusions.
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SR-based Light Source Performance Parameters
why do we build them ?

Intensity and spectral range ) Elrilliznce/Brightness:> Coherence
ux density

Time structure :> Ilzilpseet::[;cl)wgtiate

Polarization
Stability
Reliability

Multi-user capacity
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Spectral Brightness

Photon Phase Space

particle path

dN
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Density in photon phase space

i

to observer

In an ideal optical transport system, brightness is conserved — a property of the source.
Several derived quantities are often used

Central Brightness Angular density of flux

dN
B, = ‘ x=y=0=a=0
dtd 5d & gaxdy

H.Wiedemann, Part.Acc.Phys, Vol Il
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Transverse Coherence and Brightness

B Coherence of electromagnetic perturbations at two points on a plane
perpendicular to the direction of propagation.
B Relates to the capability to generate interference patterns

Maximum Brightness (diffraction limited source): Bdl — n

2
Coherent Flux: S = B(i)
2

Harder for short wavelengths
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Brightness from a real beam

Convolute the angular distribution of radiation from a single electron
with the electron beam transverse spatial and angular distributions

For the n-th harmonic of an undulator of length L

Spectral flux (E,l,B,n) Electron beam
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Brightness Evolution
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Damping/Excitation of
Transverse Oscillations Oscillations

& Discrete photon emission changes momentum along the direction of
propagation If this happens in a dispersive region of the magnet lattice, a
transverse (betatron) oscillation will be excited.

& Momentum is regained at the RF cavity only along the longitudinal direction.
This causes a reduction of the particle angles (damping).

& Both effects together lead to an equilibrium state that define the transverse
beam dimension and angular spread, i.e., the emittance.

/ Number of dipoles
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Many Possible Lattice Designs
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The Multi-Bend Achromat Lattice

Basic concepts date back to the 90’ s:

O NIM--A 335 1993, Einfeld et al. “A modified QBA optics for low emittance rings”
O EPAC’94 Joho et al. Design of a Swiss Light Source
O PAC’95, Einfeld et al.: Design of a Diffraction Limited Light Source

Along 2000’s:

O Tools available for non-linear optimization of such lattices.
O Engineering issues were tackled.
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The (immediate) Future Landscape of SR-based
Light Sources
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MAX IV: 3 GeV, 528 m, 330 pmrad

y [m]
20 7BA
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100 MHZ RF Circular, copper NEG-coated chambers Compact Magnets
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MAX IV 3 GeV Ring Commissioning Results

> 100 A.h Accumulated Dose

Up to 198 mA in multibunch mode
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Sirius: 3 GeV, 528 m, 250 pm.rad
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ALS-U: 2 GeV, 200 m, 50 pm.rad

« Storage-ring bunches transferred to accumulator
« Accumulator bunches transferred to storage ring

Gap
=10 nsec

Bunch Train Gap
<50 nsec ., =f0nsec

o
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Fast kicker magnets
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APS-U: 6 GeV, 1100 m, 41 pmrad

Hybrid 7 BA, reverse bends

C.Yao et al, IPAC 2016
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M.Borland, APS-U Forum, October 2016

Traditional off-axis injection On-axis swap-out injection
Stored Beam A \ Stored Beam Fast Kicker

Injected Beam

Injected Beam Figure courtesy D. Robin (LBNL)



HEPS, 6 GeV, 1300 m, 60 pm.rad

The R&D project of HEPS (Test facility of HEPS, HEPS-TF) has been approved and started in 2016, will
finished in 2018.

The plan of construction has been approved by central government; the construction of HEPS is
scheduled in 2018

Beijing municipal government will support the construction of Advanced Light Source Test Platform, in
order to develop the techniques of accelerator and X-ray optics

The constructions of XFEL and ERL in future are also planed in same area.

courtesy Yuhui Dong Hybrid 7 BA

Advanced Light
Source Test
Platform




3. SLS-2 period-12" 7-BA |attice
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Arc layout (30°)

= Optical functions

BB
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~ 20 um x 5 um
in straight centers

SLS status and upgrade to SLS-2

ESRF accelerator seminar, Grenoble, Jan. 18, 2017



5. Summiary. and Outloolk
courtesy Andreas Streun

Storage ring upgrade: old > new

¢ Lattice type: 12xTBA — 12x7-BA
= |ongitudinal gradient bend / anti-bend cell
+ Emittance: 5nm — =150 pm(tincl- 183)
¢ Circumference: 288 m—290.4 m
¢ Periodicity: 3 > 12
¢ Straight sections:

3x11m, 3x7/ m,6x4m — 12x5%m
¢ 3 Superbends: 29T > 60T

¢ maintained:
= 2.4 GeV beam energy, 400 mA current
=  off-axis top-up injection

SLS status and upgrade to SLS-2 ESRF accelerator seminar, Grenoble, Jan. 18, 2017



PETRA IV — Decoding the Complexity of Nature

PETRA IV — The ultimate 3D process
microscope has the potential:

to address individual organelles in living cells
and follow metabolism pathways with
elemental and molecular specificity

to image the chemistry inside a battery down
the atomic level and understand their aging
processes

to map interfaces in functional materials, e.g.,
for a thorough understanding of frictional
processes on the way to enhance energy
efficiency and reduce emissions

to study the synthesis of novel materials and
catalytic reactions inside a chemical reactor
on all relevant length scales

to image individual grains in novel materials

and alloys under working condition =~ = oA T =

- - ——

Additional experimental hall

PETRA IV Stu

T o b S,

(more space for existing =/
and new beamlines) =5 =

courtesy R.Wanzenberg
Parameters and parameter range:

Energy 6 GeV (4.5-6 GeV)

Current 100 mA (100 — 200 mA)

Number of bunches ~ 1000

Emittance horz. 10pmrad (10— 30 pm rad)
vert. 10pmrad (10— 30 pm rad)

Bunch length ~ 100 ps

2300 m circumference

g, %

AN -
Extension North

= Max

-von-Laue Hall =




Lattices Investigated for the PETRA Upgrade

» Started to investigate two different lattice types courtesy R.Wanzenberg

1. Based on the ESRF-HMBA cell

2. Based on 4D-phase space exchange and MBAs with non-interleaved sextupoles

1. Lattice based on HMBA Cells 2. 4D-phase space exchange and MBASs
= Arcs: 9 HMBASs cells to build a 45° arc = arc cells with non interleaved sextupoles
= 8 identical arcs = Undulator section, preliminary version with HMBA

Straight sections: FODO cells
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Horz. emittance of HMBA-based ring
is 12 pm-rad at 6 GeV v

Cell not yet optimized,

(small dynamic aperture) x

PETRA IV Study team | DESY Accelerator Division | January 2017 | page 23

Emittance ~ 20/20 pm v
(5 GeV, wigglers not yet included)
Undulator cell not yet optimized %




3 GeV, 562 m, 125 pmrad Dia mond_ll courtesy Richard Walker

The main lattice under study is a “double triple-bend-achromat (DTBA)”,
based on the ESRF hybrid-7BA lattice, and combining the benefits of low
emittance and a large increase in capacity for insertion device beamlines:

20 : : : : 8
— 15} _icz A y SPYTRA 7 ........... ...._ 6=
.§, 10— L <\ I DTBA e 4 g
@ B NS A D T e 42 ;
OO 0

*%* Natural emitance ~ 125 pm

+*  Several existing Bending Magnet and short ID beamlines can convert to full
Insertion Device beamlines.

** New beamlines can be built without impact on existing beamlines.

Study of a Double Triple Bend Achromat (DTBA) Lattice for a 3 GeV Light Source, -
A. Alekou et al., Proc. IPAC 2016, WEPOW044 diamond



"SPring-8-II"
a next step for the cutting-edge hard x-ray light source complex

s s I e p—
*7'5 bend achromat lattice 03
] I Energy (GeV) 6 8
% Stored current (mA) > 100 100
Effective emittance 0.157 2.8
(nmrad) ~0.1w/ ID
Energy spread (%) 0.093 0.109
> Lower energy, 6 GeV Bx, By @ ID (m) (5.5,2.2)  (31.2,5.0)
> Lower hor.&vert. beta-functions Development of subsystems on going...

> Extremely small emittance beam

. , > LLRF for on-demand pulse-by-pulse
injection from SACLA linac

injection from SACLA

> 4 |ongitudinal gradient bends (LGB) > Permanent magnet based dipoles
> No very strong magnets > Short period undulators with force
Q<60 T/m, Sx < 3,000 T/m? cancellation
- S ——=sws=mwe > No-perturbation and small-amplitude

~_ beam injection system

“and more (vacuum, monitor, RF etc.).

Courtesy Hitoshi Tanaka



courtesy Emanuel Karanzoulis

giﬁ?rrgtrone El ett r a 2 . O

Trieste
Parameter units Elettra Elettra 2.0
Energy GeV 2-24 2
Circumference m 259.2 259.2
Horizontal Emittance pm-rad 7000 @ 2 GeV 230-280
Vertical Emittance (1% coupling) pm-rad 70 2.5
Beam size @ ID (ox,0Y) wm 245 , 14 (1% coupling) 43,3
Beam size @ short ID um 350, 22 (1% coupling) 45,3
Beam size @ Bend um 150, 28 (1% coupling) 17,7
Bunch length ps 18 (100 with 3HC) 7 (70- 100 with 3HC )
Energy spread DE/E % 0.08 0.07 Circumference (m) 5590
Bending angle (per half achromat - 1/24) degree 15 3.6 and 2x5.7 Energy (GeV) 2
Coherence fraction @ 100 eV % 22 87 Number of cells 12
Coherence fraction @ 1 keV % 2 38 Geo.metric emittance (nm-rad) 0.250
Horizontal tune 33.10
1022 Vertical tune 9.19
- Betatron function in the middle of straights (x, y ) m (9.7,2.8)
10 Horizontal natural chromaticity -75
% 20 ... | Vertical natural chromaticity -51
= 10 9 N -« | Horizontal corrected chromaticity +1
= a 1. “ | Vertical corrected chromaticity +1
as} 1019 s [ | | ’f T
f AN n A = | Momentum compaction 3.45e-004
| ! [ f \ a ‘ '\ I Momentum compaction second order 3.60e-004
|/ .\ [ I“. v “ | ‘.‘" ... | Energy loss per turn (no IDs) (keV) 156
' O Y B S Jl R T = | Energy spread 6.67e-004
oA R RN N 1.52
N \—f \ N \ ¥ J N .08 X
7 o A ;fé'\‘-. [ b [ 1.00
Vo VN j/ il \ ," "‘-‘ / \ ,-‘J RS 148
AV VS Vi LA ¥ \J Horizontal damping time (ms) 14.6
2= S d =M= Vertical damping time (ms) 22.2
Longitudinal damping time (ms) 15.0
Dipole field (T) 0.8
Quadrupole gradient in dipole (T/m) <15
CDR ready to be presented for Quadrupole gradient (T/m) =0
x Sextupole gradient (T/m?) <3500
=]
o 1015 approval RF frequency (MHz) 499.654
T Beam revolution frequency (MHz) 1.1566
Q . Harmonic number 432
o 10* Orbital period (ns) 864.6
8 Bucket length (ns) 2
1013 ‘ Natural bunch length (mm, ps) 2.16 , 7.2
102 103 104 Synchrotron frequency (kHz) 6.1

hoton ener eV
p gy (eV) 26



ESRF EBS, 6 GeV, 844 m, 135 pmrad

courtesy Dieter Einfeld

* Present ESRF lattice
Double Bend Achromat = (2 dipoles + 15 quad. sext.) per cell
ID length = 5 m (standard) / 6m / 7m

= ESRF EBS lattice
Hybrid 7 Bend Achromat = (4 dipoles + 3 dipoles-quad + 24 quad., sext., oct.) per cell

ID length =5 m
Dipole Dipole
present s ey ; 3 :
o d o o=
future

Dipole Dipole Dipoles-quadrupoles Dipole

31 magnets per cell instead of 17 currently

Free space between magnets (total for one cell): 3.4m instead of 8m today !!

The European Synchrotron | SRF
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. Technical challenge: Magnets System

Mechanical design final drawing phase

 Large positioning pins for opening repeatability

Quadrupole
Around 52Tm-"

 Tight tolerances on pole profiles

High gradient quadru

‘r

- Gradient: 90 T/m n—Di 8 O tupol
- Bore radius: 12.5 mi 1 cac ctupoles
Length: 390/4 . .. Sextupoles
- Power: 1-2 kW Combined Dipole-Quadrupoles “Length 200mm
{ 0.54T/34Tm? &0.43T/34 Tm- Gradient: 3500 T2

Permanent magnet (Sm,Co,-) dipoles &
longitudinal gradient 0.16 — 0.65 T, magnetic gap 25 mm Gael Le Bec e
18 meters 'Ong, 5 mOdUIeS The European Synchrotron M

Page 16



BESSY VSR - Variable Pulse Length Storage Ring (TDS Design)

* short (ps) and long pulse option

* maintain high average brilliance
-> preserve emittance

voltage / MV

« TopUp capability

time / ns
« 0.50GHz NC (4 x 1 cell, 1.6 MV)

. 1.50 GHz SC (2 x 5 cell, 20.0 MV)
. 1.75 GHz SC (2 x 5 cell, 17.1 MV)

76 times higher gradient than BESSY Il
— 176 = 8.7 shorter bunches

Courtesy Andreas Jankowiak
A. Jankowiak, BESSY VSR, 20.01.2017 29




Enabling & Enabled Technologies

® Compact magnets
e Compact vacuum systems

e Advanced injection schemes — Fast kickers
— On-axis
— Swap-out
— Accumulator Rings

® Bunch lengthening systems (harmonic cavities)

e Advanced insertion devices (round apertures):
— Delta Undulators
— Helical superconducting Undulators

Jan 2017 Matter and Technologies Annual Meeting, Darmstadt
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How was it possible ?

New Lattica
Design (MBA)

Accelerator
Physics
New Tools for
Dynamic Analysis

Compact

High Brightness | Magnets

Distributed
Pumping — NEG

coatin
Accelerator &

Engineering
Low Frequency
RF

Long Bunches
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Compactedness is the key !

St. steel Copper

otch absorbers Distributed absorbers

lon pumps NEG coating

ALBA
Picture by E. Aldmour
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The Quest for higher brightness
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Beyond MAX IV — exploring future possibilities

e Can the MBA concept be used to design a storage ring
that provides a bare lattice emittance ~ 10 pm rad
within the MAX IV 3 GeV ring circumference (528 m) ?

e |f we take the present trend to smaller gaps to a new
level, and consider that “...when it is necessary that a
magnetically significant dimension of a magnet is very
small, a permanent magnet will always produce higher
fields than an electromagnet”, K. Halbach J.App.Phys
(1985), Vol. 57, N. 1.

e Large scale use of permanent magnet technology
could play a key role in this development.

Jan 2017 Matter and Technologies Annual Meeting, Darmstadt MNAX TV
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FERMANENT MAGNET STORAGE RINGS FOR
MICROLITHOGRAPHY AND FEL SOURCES

J. LE DUFF
_Labcr-'.:a,toi,te de £'Accélfinateur Lindaire
lndvensité de Pawdis-Sud, 91405 ORSAV - France

Y. PETROFF
. Lure
Batiment 209 C - 91405 ORSAY Cedex - France

Fermilab Recycler Ring
Technical Design Report
Gerry Jackson, Editor

TH4PBCo01 Proceedings of PAC(09, Vancouver, BC, Canada

LNLS-2: ANEW HIGH PERFORMANCE SYNCHROTRON RADIATION
SOURCE FOR BRAZIL

J.A. Brum, A. R. B. Castro, J. Citadinmi , R. H. A. Farias , J. G R. S. Franco, L. Liu, S. R. Marques
R. T. Neueschwander, X. R. Resende, M. C. Rocha, C. Rodrigues, R. M. Seraphim, P. F. Tavares,
G. Tosin, LNLS, Campinas, SP, Brazil
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Current SR Projects using PM Technology
(for dipole magnets)

®Sirius
o ESRF-II
e Spring 8-l

Jan 2017 Matter and Technologies Annual Meeting, Darmstadt
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Diffraction Limited @ 10 keV within ~ 500 m

1

Compact Design — Small Aperture

High .
Novel Injection Gradient NEG coating

very small
Schemes Permanent y

Magnets apertures

Long(er)
Bunches

Enabling Technologies

Jan 2017 Matter and Technologies Annual Meeting, Darmstadt NAK



Beyond MAX IV — an exercise

Existing 7 BA

Future Lattice Candidate — 19 BA

Jan 2017

Matter and Technologies Annual Meeting, Darmstadt NAK



Beyond MAX IV — an exercise

Lattice design: OPA (A.Streun)
Elegant (M.Borland)

19-BA lattice in the MAX IV 3 GeV ring tunnel

QF

QF

SD

BH

SF

SD

BH

0.5
X [m]

Jan 2017

Parameter Value Unit
Energy 3|GeV
Number of periods 20
Circumference 528|m
Straight section length 5T,
Natural Emittance ( 16 prb.rad
Natural energy spread Ne.0alss”
Horizontal Tune 101.2
Vertical Tune 27.28
Natural horizontal chromaticity -100.21
Natural vertical chromaticity -126.1
MAX TV

Matter and Technologies Annual Meeting, Darmstadt




Beyond MAX IV — an exercise
19-BA lattice in the MAX IV 3 GeV ring tunnel

XE-2
14 - L0.6
L 0.4
12 -
0.2
210 - 0.0
= E
: 0.28
[wf
R —0.45
4d i
& 5]
= 0.6%
H n
E 6- -
@ L -0.85
4 1.0
1.2
2 -1.4
1.6
DI T
0 25

M F F F?III-III-III-III-IIIEIII-III-III-III-Iillilll-lll-lll-lll il?ll-lllq ! q m
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19-BA lattice in the MAX IV 3 GeV ring tunnel —

Magnet Parameters
: Dipoles : Sextupoles
Unit Cell Matching Cell
SF SD
Length [m] 0.3333 0.16667
Length [m] 0.1 0.1
Angle [deg] 1 0.5 -

: Gradient [T/m2] 33592 -19729
Field [T] 0.52 0.52 Pole Tip Field [T] 1 0.6
Gradient [T/m] -70.1 30| 2= PHE '

Quadrupoles
QF QM QFE QDE
Length [m] 0.075 0.15 0.1 0.1
Gradient [T/m] 219 183 234 -198
Pole Tip Field [T] 1.2 1 1.29 1.1

Jan 2017

Magnet bore radius = 5.5 mm

Matter and Technologies Annual Meeting, Darmstadt

NAX




19-BA lattice in the MAX IV 3 GeV ring tunnel -
Dynamic and momentum aperture

Dynamic Aperture
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Challenges

e Magnet Design (field quality, rad. damage, temp.
dependence, trim)

e Light Extraction
® On-axis injection (fast kickers), Swap-out ?

e Collective effects (incoherent (IBS) and coherent) — More
lengthening ?

® Low alpha

® Heat load on chambers

® NEG coating of very small aperture chambers
® Mechanical integration
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High Gradient PM Quadrupole Examples

Fig. 1 Modified Halbach Quadrupole
7 mm bore radius, 285 T/m — Mihara et al, EPAC2004, Iwashita et al, PAC2003

Pure permanent magnet quadrupole
Halbach configuration
/ Number of blocks: M = 8
/ Easy axis phase advance per 2
Easy axis phase advancer per block 135 degrees
/ Block phase advance 45 degrees
'\“-‘

Hybrid quadrupole - steel pole pieces

rl 5.5|mm inner radius
r2 27.5|mm outer radius
Br 1.12|T remanence
r3 15 mm pole depth parameter / ri 5.5|mm |inner radius

= r2 27.5\mm outer radius
Pole face coordinates - simplified model / - T emonence
x v |
5.740251 13.85819| Analytically Estimated Gradient: 250(T/m

FEMM Result | \ 249[T/m | |

Gradient: 296 T/m ‘ N
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Intra Beam Scattering

90 — | | | |
. (With IBS) —ie B
80 t‘fsct (noIBS)  + s - 460 8
\ &, (With IBS) —=— :
70 - &y (no |BS) ® - 440 £
5 m
60 - h {420 . :
5'@ 50 - + 400 % E
Cwr .— 1380 2 s
- :
30 - 4 360 S
[}
20 - IBS / - 340 S

10 3, & | e | e | . | 200

Og nat G [mm] (via LC tuning)

IBS in the present MAX IV 3 GeV ring
Plot by S.Leemann

RMS Bunch Length [cm]

IBS in the 19-BA
Calculations by Johan Bengtsson

MAX-lab Internal Note 201211071
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Multiple Harmonic Cavities
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Summary and Conclusions

e The international landscape of storage-ring based synchrotron light
sources is currently undergoing a major change with many new
projects worldwide promising orders-of-magnitude performance
iImprovements.

— Increased control of the time structure will cater for a wide variety of
user applications

— Brightness and coherence improvements made possible by compact
machine designs will open up new research fields.

® |t is time to start asking ourselves: can the quantum jump in
brightness made possible by the MBA lattice be repeated in the next
10-15 years ?

® The time may have come when the benefits of large scale use of
permanent magnets in storage ring lattices outweigh the risks/costs ?
This could lead to yet another order-of-magnitude jump in source
brightness
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