

Big Data Applications and Challenges for Photon Science

Andreas Kopmann

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

"Big Data"

- Expression coined by John R. Mashey
- Definition today

Big data is a term for <u>data sets</u> that are so large or complex that traditional <u>data processing</u> applications are

inadequate to deal with them. [...] (Wikipedia)

What is big?

10[^] 9 Giga

10^12 Tera

10^18 Exa

10^21 Zetta

10^15 Peta

- = GB/s rate of fast detectors
- = 10 TB size of largest harddisks
- = ~1 PB size of photon science data
- = 3..12 EB NSA data center Utha
- = capacity of harddisk world-wide

Bi

Big Data ... and the Next Wave of InfraStress John R. Mashey Chief Scientist, SGI

Technology Waves: NOT technology for technology's sake IT'S WHAT YOU DO WITH IT But if you don't understand the trends IT'S WHAT IT WILL DO TO YOU

J R Mashey, 1998

sgi

"Big Data is such a simple term, it's not much a claim to fame."

Data-Intense Applications in Photon Science and Machine Physics

- Facilities
 - PETRA3
 - XFEL
 - Acc. Test Platform ATP: ANKA, FLUTE, ..
- Data-intense methods
 - Tomography
 - Scattering
 - Electron Beam monitoring
 - **.**..
- Detectors
 - Commercial cameras
 - X-ray detectors
 - Fast digitizers

Custom detectors (e.g. KAPTURE)

High-speed cameras

nco.

Detector Rates in Photon Science and Machine Physics

Device	Rate MB/s	Rate TB/8h	Ch.	ADC bit	Rate Hz	Beamline
"CL Base"	255	7				e.g. pco.dymax
"CL Full"	800	22	4M	16	100	e.g. pco.edge
Pilatus 6M	223	6	6M	20	10-12,5	P11
UFO Camera	1125	31	20M	12	30	P05/07
KAPTURE	3815	105	4	12+4	500M	ANKA
KAPTURE2	15259	419	4-8	12+4	1G	
KALYPSO2	4883	134	512	14	5MHz	

- CL = Camera Link
- All devices without compression

Beamline Automation

- Robots for sample changers
- Sample identification (e.g. by QR code)
- Camera revolver, lenses
- Advanced control systems

Tomography Services for Morphology

- ANKA domain expert collects samples
 - Check of sample quality
- Measurement at ANKA
 - Beamtime 6 days (e.g. Nov 2015)
 - Up to 300 samples from 14 scientists
 - Methods: Radiology, Tomography, Cine-Tomography
 - Samples: in alcohol, dried, amber, ...
 - More than 90% of the samples are usefull
 - Interested scientists might join
- Datasets are automatically transferred to processing storage
 - Analysis by users

T. van de Kamp, ANKA

"Real-life" Data Rates

PETRA3 storage system

Storage consumption in size (per Beamline)

"Real-life" Data Rates (details)

PETRA3

- Tomography (P05/P07)
 - Mean 75 TB/a
 - Max 300 TB/a (eq. 75h op)
- Imaging / Diffraction (P11)
 - Mean 200 TB/a
 - Max 370 TB/a (eq. 500h op)

ANKA

- Tomography (TopoTomo)
 - Mean 40 TB/a (eq. 42h op.)
- KAPTURE
 - Mean 10 TB/a (eq. 1h op.)

Data Taking Petra3

Logical Dataflow

Sandbox per Beamline

Digital Data World-wide

http://www.wired.com/magazine/2013/04/bigdata/

Commercial services approach Exascale level

- NSA Data Center Utah 3-12 Exabytes
- Helmholtz Data Federation aims for Exascale storage
- IPhones Q1 2017:
 78,3M -> 5 EB SSD
- Harddisk Q3/2016: 100M -> 800 EB over 3 years: 7500 EB

Data Challenges: 1. Reduce Data as Early as Possible

- Adopt pre-processing, reconstruction to detector rates
- Avoid user interaction, define workflows
- Make use of trigger to filter relevant data
- Assess quality of data
- Heterogeneous FGPA-GPU computing is very powerful
- But tasks are often domain specific
 - Solution: Modularity and frameworks with core functionality

Tools for GPU Computing: The UFO Parallel Processing Framework

- Free and open-source
- Supports OpenCL parallel hardware
- **Remote DMA access to FPGA electronics**
- Fast pipelined architecture
- Scheduling across multiple devices and nodes
- Introspection interface to Python and other scripting languages
- Integrated in control systems

flat field

acquisition

Reconstruction Single GPU (GB/s)

Annual Meeting Matter and Technologies, Darmstadt 31.1-2.2.2017

2. Adopt Analysis for Large Datasets

15

Huge amount of data

- User often do not have the necessary resources (computers, memory, software) available in order to process the tomograms at their home institutions
- Data analysis is still very time-consuming
 - Segmentation of tomographic datasets is usually done manually

Solutions:

- Establish analysis centers at the facilities
- Involve more scientists by collaborative analysis and open data
- Re-evaluate known algorithms with recent computing performance

-->**N@//**3 TECHNISCHE UNIVERSITÄT HEIDELBERG UNIVERSITÄT DARMSTADT **ZUKUNE** SEIT 1386 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung UNIVER Friedrich-Schiller-Universität Jena

Institute for Data Processing and Electronics

Verbundforschung:

3D Segmentation Algorithms

- Algorithm *requires performance of GPUs*
 - 1. Preprocess: Label the segments in some well chosen slices.
 - 2. Start a great number of weighted random walks at each labeled pixel.
 - 3. The number of hits by random walks which were started in the same segment leads to the probability that a voxel belongs to this segment.
 - 4. Postprocessing using Active Contour Method in 3D.

Develop 3D-visualization for data catalogs

Raw data

0

WAVE - 3D Web-Visualization

Conclusion

- Data rates will reach 1PB/a soon
- Exascale data center will come
- Still datasets will have different access times

If you really care for your data, organize it properly!

- Online data assessment
- Improve Analysis methods for large datasets
- Scalable data formats with extended metadata
 - + scalable visualization

Solutions might not appear automatically by generic "Big Data" research

