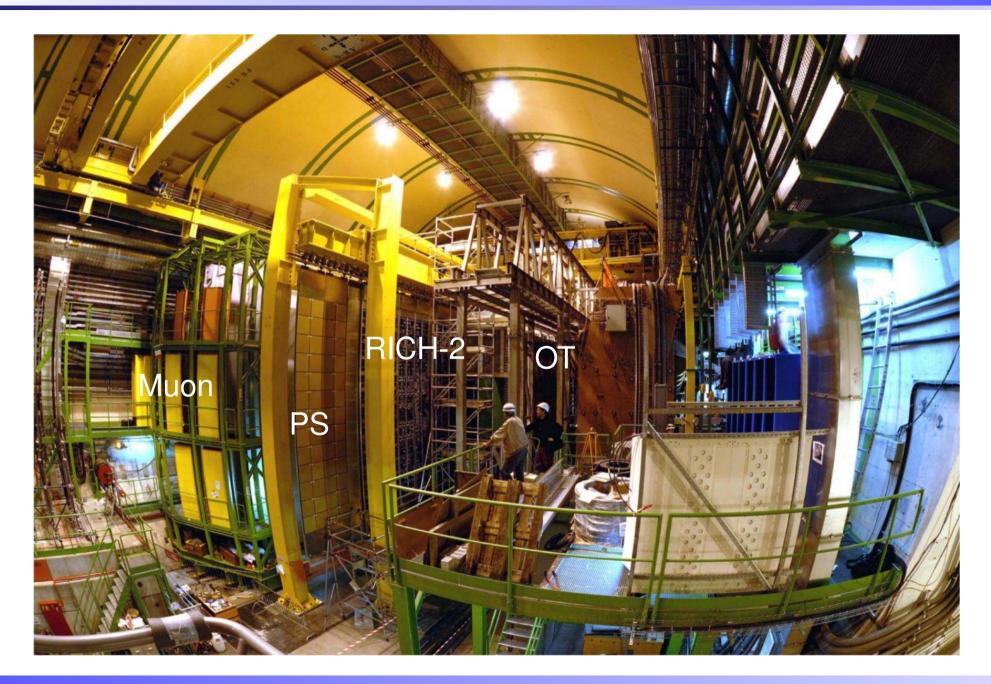


Status des LHCb Experiments

Michael Schmelling – MPI für Kernphysik

e-Mail: Michael.Schmelling@mpi-hd.mpg.de


Übersicht

- Konstruktion und Inbetriebnahme
- Beiträge der deutschen Gruppen
- Physikprogramm
- Detektor-Upgrade

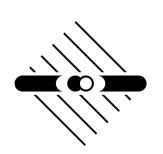
1. KONSTRUKTION UND INBETRIEBNAHME

- Konstruktion von Komponenten
 - → VELO-Modulproduktion erfolgreich angelaufen
 - → IT/TT Produktion der Leitern (fast) abgeschlossen
 - → Outer Tracker-Module und MUON-MWPCs komplett
- Stand der Installation
 - → Einbau von Strahlrohr, RICH-1 Mechanik, Muon System begonnen
 - → 6 von 12 Outer Tracker Superlagen bereits installiert
 - → 3 von 6 Inner Tracker Support Frames sind eingebaut
 - → VELO-Tank, RICH-2 Mechanik und Kalorimeter komplett
- Inbetriebnahme des Magneten ist abgeschlossen
- Commisioning weiterer Subsysteme hat begonnen
- Global Commissioning ab Frühjahr 2007

Aufbau von LHCb wird zum Start von LHC abgeschlossen sein!

2. BEITRÄGE DER DEUTSCHEN GRUPPEN

- → Level1-Elektronik für Outer Tracker
- → Radiation/Beam Position Monitor
- → Adaption von SHERPA für LHCb, MC-Produktion



- → Produktion von OT-Modulen, Koordination der Installation
- → Produktion des OTIS-Chips & GOL-Aux Interface Boards
- → Slow-Control der OT Frontend Elektronik
- → OT Alignment, ST-OT Alignment Koordination
- → Forward-Tracking

- → Produktion des Beetle-Chips für VELO und ST
- → Design und Test Silicon Tracker F/E-Elektronik
- → Koordination der IT-Installation, IT-Alignment
- → Slow-Control für Frontend Elektronik bei VELO und ST

Uni Dortmund / Experimentelle Physik V

- → Outer-Tracker spezifische Arbeiten zur L1-Elektronik
- → FPGA-Programmierung (TELL1 Board)
- → Testbeam-DAQ (abgeschlossen)
- → Board-Tests
- → Commissioning
- → Higher Level Trigger

→ Radiation/Beam Position Monitor

■ Software:

- → SHERPA-MC für LHCb
- → B-Zerfälle
- → Background Studien

Uni Dortmund / Experimentelle Physik V

weitere Beiträge: LCG MC-Production für LHCb

- Linux Cluster mit 160 Prozessoren, kontinuierlicher Ausbau
- Grid-Technologie
- sichtbarer Beitrag (ca. 25% von GridKa)

Uni Heidelberg / Physikalisches Institut

Outer Tracker Aufgabenverteilung:

Modul-Entwicklung	NIKHEF, Heidelberg
Werkzeuge	NIKHEF, Heidelberg
Alterungstests	Heidelberg, NIKHEF
Modulbau	NIKHEF, Warschau, Heidelberg (28% Kanäle)
OTIS TDC Chip	Heidelberg
Frontend Elektronik	NIKHEF, Heidelberg
Optischer Link	Heidelberg, Dortmund
Auslese/L1 Buffer	Dortmund
Rahmen	NIKHEF
Tragebrücke	NIKHEF
Montagevorrichtung	Heidelberg
Installation	NIKHEF, Heidelberg
Gasversorgung	Heidelberg

weitgehend abgeschlossen

Kammerrahmen - 6 von 12 installiert

Uni Heidelberg / Physikalisches Institut

- Produktion von Chips und Modulen bis Ende 2005
- Produktion der GOL-Interface Boards abgeschlossen
- Focus auf Installation Heidelberger Beiträge:
 - → OT-Installation Koordinator (S. Bachmann)
 - → Kontruktion der Installation-Tools
 - → Gasversorgungsleitungen

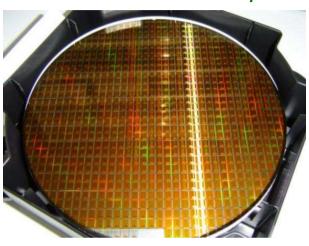
- ✗ Integration der OT Slow-Control Frontend-Elektronik in PVSS
- ✗ Inbetriebnahme der vollständigen OT Detektor-Auslese (DO & HD)
- Outer Tracker einer der ersten Nutzer des LHCb Commissioning Systems

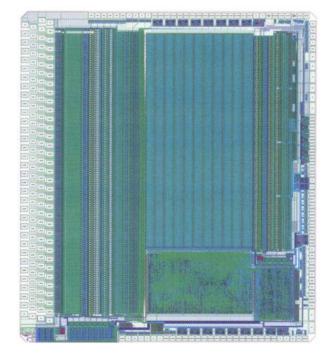
Uni Heidelberg / Physikalisches Institut

→ Software Aktivitäten

- Alignment
 - → Alignment-Koordination für TT,IT,OT Spurkammern (J. Blouw)
 - → Outer-Tracker Alignment basierend auf Millipede
- Spurrekonstruktion
 - → Verantwortung für "Vorwärts Tracking" (S. Menzemer)
 - → Entwicklung schneller Spuralgorithmen zur Verwendung im Trigger
 - → Entwicklung von Monitoring Tools
- Grid-Computing
 - → Produktionsmanagement des deutschen Beitrages am GridKa
 - → weitere Details: → Christian Zeitnitz
- Vorbereitung der physikalischen Analyse

Übergang von Hardware zur Physik-Analyse!

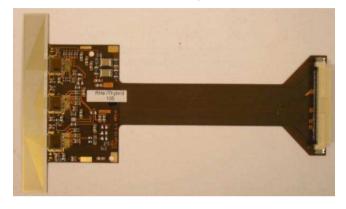

MPI für Kernphysik


der Beetle Chip für VELO und ST

- $\rightarrow 0.25 \mu m$ CMOS Technologie
- → extrem Strahlenhartes Design
- → rauscharme Eingangsverstärker
- → Speicherung von max. 160 Events
- → Auslese von 40% aller Kanäle bei LHCb

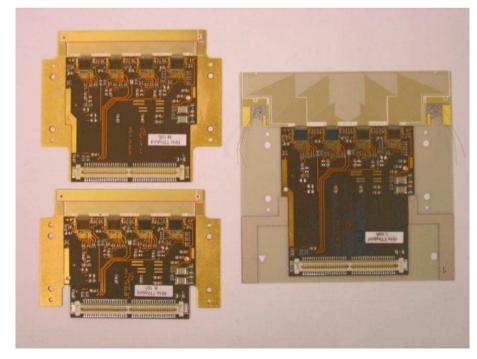
43200 Chips produziert & getestet

 $5.1~\text{mm}{\times}6.4~\text{mm}$


Yield > 80%

MPI für Kernphysik

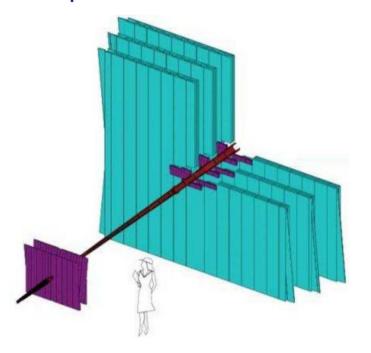
Inner Tracker Hybrid



- Silicon Tracker Auslesehybride
 - → Design am MPI, Produktion durch Industrie
 - → Burn-In & endgültige Funktionstest am MPI
 - ★ 400 Hybride mit 3 Chips für IT
 - ★ 320 Hybride mit 4 Chips für TT

erstes Inner Tracker Modul

Trigger Tracker Hybride

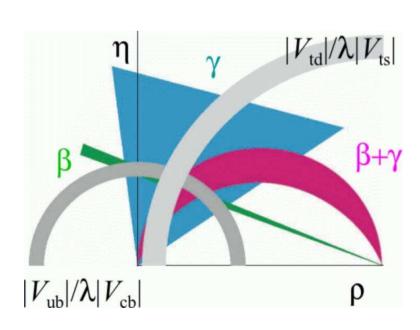


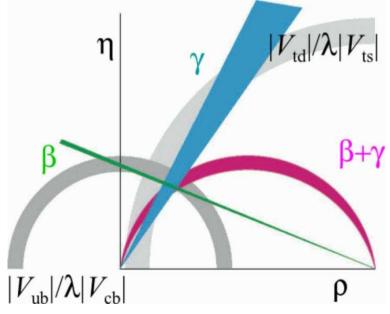
MPI für Kernphysik

- → Beiträge zum Silicon Tracker (TT & IT)
 - Chip- und Hybrid-Produktion erfolgreich abgeschlossen
 - Schwerpunkt derzeit auf Installation und Commissioning
 - → Koordination der Inner-Tracker Installation (H. Voss)
 - → Slow-Control zur Programmierung der F/E-Chips
 - zunehmend Software/Physik Aktivitäten
 - → Inner Tracker Alignment mit Millipede
 - → Co-Convernor der LHCb CP-Measurements Working Group (MS)

LHCb Silicon Tracker & Outer Tracker

ca. 30% aller Spuren durchqueren den Inner Tracker


3. PHYSIKPROGRAMM



- \blacksquare Schwerpunkte des Physikprogramms nach Messung von $\Delta m_s \dots$
 - \rightarrow B_s Mixing-Phase ϕ_s
 - \rightarrow seltene Zerfälle $B_s \to \mu^+ \mu^-$, $B_d \to K^* \mu^+ \mu^-$
 - \rightarrow Präzisionsmessungen von γ in $B \rightarrow DK$
 - \rightarrow Untersuchung von Pinguin dominierten Zerfällen, z.B. $B_d \rightarrow \phi K_s$

Unitaritätsdreieck: heutiger Stand

Plots von T. Nakada

LHCb Analyse in Deutschland

- gute Vernetzung mit Theorie-Gruppen
- experimentelle Expertise von BaBar und CDF
- geplante Schwerpunkte der Analyse in Heidelberg
 - ightharpoonup CP-Asymmetrien in $B_d \rightarrow hh$
 - → Pinguin-dominierte Zerfälle
- geplante Schwerpunkte der Analyse in Dortmund
 - ightharpoonup Messung des CKM-Winkels γ
 - → Seltene B-Zerfälle
 - → flavourverletzende Prozesse
- Zusammenarbeit der deutschen Gruppen
 - → gemeinsame Meetings von PI und MPI
 - → KET Flavour Workshops
 - → B-Physics Workshop in Neckarzimmern 3/2007

Vorbereitung der Physik-Analyse auf dem Weg . . .

4. DETEKTOR-UPGRADE

- → Überlegungen haben begonnen . . .
 - derzeit diskutiere Szenarien
 - $\rightarrow L = 2 \times 10^{32} / \text{cm}^2 \text{s} \text{nominelle LHCb Luminosität}$
 - $\rightarrow L = 5 \times 10^{32} / \text{cm}^2 \text{s} \text{natürliche Lernkurve}$
 - x im wesentlichen Verbesserungen in Trigger und Software
 - → $L = 1 \times 10^{33} / \text{cm}^2 \text{s}$
 - eingeschränktes R&D wird notwendig
 - ¥ 40 MHz Vertex Trigger, neue F/E-Chips und L0-Elektronik
 - $\rightarrow L \gg 1 \times 10^{33}/\text{cm}^2\text{s}$
 - massives R&D
 - vermutlich Upgrade aller Subsysteme erforderlich
 - welche Steigerung der experimentellen Präzision ist sinnvoll . . .?

Workshop "High Luminosity Upgrade", 11./12. Januar 2007 National E-Science Institute, Edinburgh