Aspects of (non-minimal) SUSY phenomenology

Philip Diessner

DESY Hamburg, Theory Group

FH Fellow Meeting, 29.11.2016

Aspects of (non-minimal) SUSY phenomenology

Philip Diessner

DESY Hamburg, Theory Group

FH Fellow Meeting, 29.11.2016

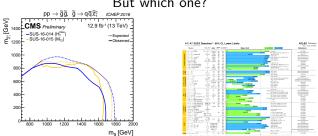
Diplom and PhD at TU Dresden until Oct. Floated down the Elbe to DESY

Introduction

Supersymmetry

- Solution to Hierarchy problem
- Provides dark matter candidate
- Studied for decades as extension of the SM
- Usually in the minimal direction: MSSM, NMSSM

Introduction


Supersymmetry

- Solution to Hierarchy problem
- Provides dark matter candidate
- Studied for decades as extension of the SM
- Usually in the minimal direction: MSSM, NMSSM
- Just around the corner

Introduction

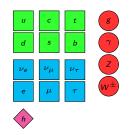
Supersymmetry

- Solution to Hierarchy problem
- Provides dark matter candidate
- Studied for decades as extension of the SM
- Usually in the minimal direction: MSSM, NMSSM
- Just around the corner

But which one?

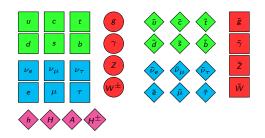
Going non-minimal

- So far no clear signal of SUSY (or any BSM) at the LHC
- Might be something unconventional, need to explore different avenues
- Community has many years of experience studying BSM physics
- In the last years, big efforts to generalize codes and availability (check e.g. hepforge.org)
- Straight-forward application?


Going non-minimal

- So far no clear signal of SUSY (or any BSM) at the LHC
- Might be something unconventional, need to explore different avenues
- Community has many years of experience studying BSM physics
- In the last years, big efforts to generalize codes and availability (check e.g. hepforge.org)
- Straight-forward application?

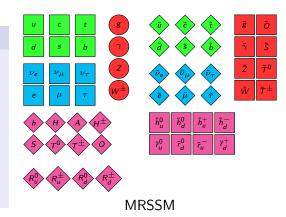
⇒ Take unconventional (low-energy) model and test it thoroughly against different experimental constraints. In the following: R-symmetric SUSY


Standard Model

- Describes strong and electroweak interactions
- Higgs as first elemental scalar
- Misses dark matter, gravity

Minimal Supersymmetric Standard Model

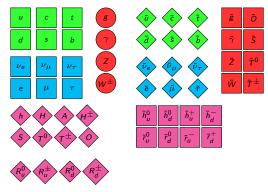
- "Haag-Łopuszański-Sohnius-Theorem" allows extension of space-time symmetry
- Connection between fermions and bosons



MSSM

Minimal R-Symmetric Supersymmetric Standard Model

R-Symmetry


- Additional symmetry included in SUSY algebra
- For (*N* = 1) SUSY is a global *U*(1) symmetry
- Only symmetry to distinguish SM field and superpartner

Minimal R-Symmetric Supersymmetric Standard Model

Consequences

- No Majorana masses for gauginos and higgsinos
- ightarrow ightarrow Dirac neutralinos
- Extended Higgs sector
- No A-terms

MRSSM

Phenomenological study

Predictions

- Heavy Dirac gluinos more natural than in MSSM
- Cross section for Squark production is reduced
- Dirac neutralino as LSP
- Extended Higgs sector

Phenomenological study

Predictions

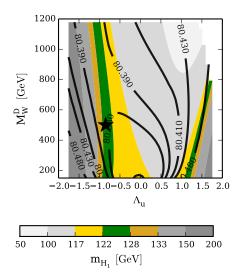
- Heavy Dirac gluinos more natural than in MSSM
- Cross section for Squark production is reduced
- Dirac neutralino as LSP
- Extended Higgs sector

Observables

- Higgs boson mass (and signal strength)
- EW precision observables, here W boson mass
- Dark matter observables
- Recasting direct LHC searches

Relevant model parameters

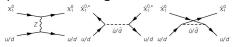
- Dirac mass M_W^D
- Yukawa coupling Λ_u
- Higgsino mass µ_u
- Squark masses m_{q̃}


Higgs and W mass

Higgs boson

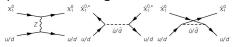
- $m_H = 125 \, \text{GeV}$
- Prediction in SUSY model
- 3 GeV theory uncertainty
- Full one-loop effects, two-loop eff. potential

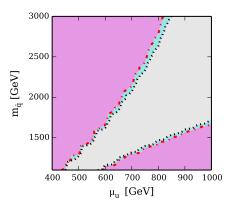
W boson


- $m_W^{
 m exp} = 80.385 \pm 0.015 ~{
 m GeV}$
- Full one-loop, leading SM two-loop effects

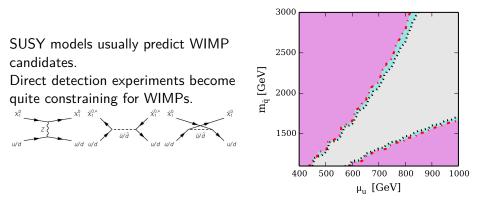
Dark matter

SUSY models usually predict WIMP candidates.


Direct detection experiments become quite constraining for WIMPs.



Dark matter

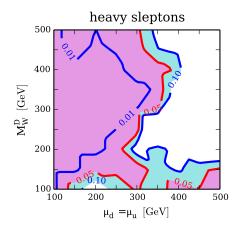

SUSY models usually predict WIMP candidates.

Direct detection experiments become quite constraining for WIMPs.

Dark matter

Also have to ensure the correct DM relic density.

LHC searches for electroweak SUSY states


Recasting

- Model does not fit assumptions e.g. simplified model
- Take signal regions, number of background and data events from experiment
- Simulate signal events ourselves
- Including (MC) detector simulation and statistics

LHC searches for electroweak SUSY states

Recasting

- Model does not fit assumptions e.g. simplified model
- Take signal regions, number of background and data events from experiment
- Simulate signal events ourselves
- Including (MC) detector simulation and statistics

Conclusions

- Interested in study of BSM models and comparison with experiment
- At the moment: SUSY QCD@NLO with Dirac gluino
- After that I am looking for new things

Conclusions

- Interested in study of BSM models and comparison with experiment
- At the moment: SUSY QCD@NLO with Dirac gluino
- After that I am looking for new things

Thanks for your attention!

Conclusions

Interested in study of BSM models and comparison with experiment

- At the moment: SUSY QCD@NLO with Dirac gluino
- After that I am looking for new things

Thanks for your attention!

Based on JHEP 1412 (2014) 124 [arXiv:1410.4791] Adv.High Energy Phys. 2015 760729 [arXiv:1504.05386] JHEP 1603 (2016) 007 [arXiv:1511.09334] done in collaboration with J. Kalinowski, W. Kotlarski, D. Stöckinger