A search for new heavy particles in events with highly ionising, short tracks at the CMS experiment at 8 TeV

Teresa Lenz

FH Fellow Meeting (DESY)

November 29th, 2016

The Standard Model and beyond

- The Standard Model is a very successful theory, but suffers from shortcomings ...
 - Hierachy problem
 - Dark Matter
 - ► ...

The Standard Model and beyond

- The Standard Model is a very successful theory, but suffers from shortcomings ...
 - Hierachy problem
 - Dark Matter
 - ...

Possible solution:

The Minimal Supersymmetric Standard Model

 $\rightarrow~$ Doubling of particle content

Exotic supersymmetry signatures

- Many new particles predicted
- Wide SUSY parameter space already ruled out experimentally
- $\rightarrow~$ Look for more exotic scenarios

Exotic supersymmetry signatures

- Many new particles predicted
- Wide SUSY parameter space already ruled out experimentally
- $\rightarrow~$ Look for more exotic scenarios

3

Long-lived charginos

 $\rightarrow~$ Lightest chargino almost mass degenerate with lightest neutralino:

- $\rightarrow~$ Phase space suppression \rightarrow long chargino lifetime
- \rightarrow Occur naturally in the MSSM

Exotic supersymmetry signatures

- Many new particles predicted
- Wide SUSY parameter space already ruled out experimentally
- $\rightarrow~$ Look for more exotic scenarios

3

Long-lived charginos

 $\rightarrow~$ Lightest chargino almost mass degenerate with lightest neutralino:

- $\rightarrow~$ Phase space suppression \rightarrow long chargino lifetime
- $\rightarrow~$ Occur naturally in the MSSM

How to search for long-lived charginos?

- Chargino decays to neutralino and $f\overline{f}'$ pair
- Signature dependent on the chargino lifetime

- Chargino decays to neutralino and $f\overline{f}'$ pair
- Signature dependent on the chargino lifetime

• Intermediate lifetimes $(c\tau \approx 1-30 \text{ cm})$: Short tracks inside the tracking system

- Chargino decays to neutralino and *f*f['] pair
- Signature dependent on the chargino lifetime
- Intermediate lifetimes (cτ ≈ 1 − 30 cm): Short tracks inside the tracking system
- Decay products not reconstructable

- Chargino decays to neutralino and *f*f['] pair
- Signature dependent on the chargino lifetime
- Intermediate lifetimes (cτ ≈ 1 − 30 cm): Short tracks inside the tracking system
- Decay products not reconstructable

4

Non-standard search strategy

Twofold search strategy

Search for highly ionising, short tracks

- 1. Selection of tracks
 - ► Including short tracks: N_{hits} ≥ 3
 - Novel compared to other searches (N_{hits} ≥ 7/8)
- 2. Selection of heavy particles
 - Using dE/dx (Energy loss per path length)
 - $\blacktriangleright \ \langle \frac{dE}{dx} \rangle \cong K \frac{m^2}{p^2} + C$

$d\mathsf{E}/d\mathsf{x}$ measurement of short tracks

A search for new heavy particles in events with highly ionising, short tracks at the CMS experiment

Event selection

Event-based selection:

- Trigger on ISR (Jet $+ \not \! E_T$)
- QCD-multijet suppression

7

Candidate track selection:

Event selection

Event-based selection:

- Trigger on ISR (Jet $+ \not \in_T$)
- QCD-multijet suppression

Candidate track selection:

- Good quality track selection
- Kinematic preselection
- Lepton/jet veto
- Isolation selection
 - Track isolation

20 30 40

> F^{∆R<0.5} [GeV] calo

10

 $E_{\rm calo}^{\Delta R < 0.5} < 5 \,{\rm GeV}$

A search for new heavy particles in events with highly ionising, short tracks at the CMS experiment

Nevents

 \rightarrow 616

119 \rightarrow

Main discriminating variables

Background contributions

Fake tracks Share of background W[±]+iets Reconstructed tracks, not produced by one single particle preselection +dE/dx > 0.050.6 Muons 0 In case of Electrons non-reconstruction 0.2 Electrons Pions Fakes Pions Muons

Dominant background: Fake tracks

Fake background: Twofold estimation approach

Fully data-based

- 1. Estimation of N_{fake} (inclusive in dE/dx):
- ► Fake rate (ρ_{fake}): Selection of $Z \rightarrow \ell \ell$ events + Candidate track selection = Selection of fake tracks
- ρ_{fake} independent of underlying process
- $ightarrow \ {\it N}_{\sf fake} =
 ho_{\sf fake} \cdot {\it N}_{\sf event-based \ {\sf selection}}$

- 2. dE/dx shape:
- From fake enriched control region in data
- Same dE/dx shape in signal region and control region

10

A search for new heavy particles in events with highly ionising, short tracks at the CMS experiment

Results

0

SR1

SR2

dE/d× discriminator 0000 0000 SR 3 SR 4 Four different signal regions \rightarrow SR 1 SR 2 30 50 p_{T} [GeV] 19.7 fb⁻¹ (8 TeV) 40 Number of events Prediction 35 Total uncertainty on prediction Data 30 25 20 \rightarrow No excess 15 10 5

SR3 A search for new heavy particles in events with highly ionising, short tracks at the CMS experiment 11

SR4

Interpretation in the MSSM

- CL_s exclusion limits
- Combination of four signal regions

Exclusion up to masses of 500 GeV and down to lifetimes of $2\,\mbox{cm}$

A search for new heavy particles in events with highly ionising, short tracks at the CMS experiment 12

Conclusion

A search for new heavy particles in events with highly ionising, short tracks

- Targets mass-degenerate chargino neutralino scenarios
- Novelties:
 - Inclusion of tracks down to three hits
 - Use of energy information from pixel tracker
 - Offline energy calibration of pixel silicon tracker

- No sign of physics beyond the Standard Model
- Stronger limits for intermediate chargino lifetimes compared to previous analyses

Thank you

Backup

Dominant systematic uncertainties

Background uncertainty	Min [%]	Max [%]
Uncertainty on fake rate	32.1	45.2
Uncertainty on fake dE/dx shape	18.7	65.2
Signal uncertainty	Min [%]	Max [%]
Theoretical x-section	4.5	12.1
Simulation of ISR	9.2	12.6
Simulation of trigger efficiency	1.9	4.4
Simulation of PDF	2.6	6.8
Simulation of calorimeter isolation	3.0	12.1
Simulation of missing middle/inner hits	2.2	3.7
Simulation of dE/dx	6.0	6.0
Track reconstruction efficiency simulation	4.6	6.0

Long-lived charginos in the MSSM

$$\begin{split} \Psi_{i}^{+} &= \left(-i\tilde{W}^{+}, \tilde{h}_{u}^{+}\right) & \Psi_{i}^{0} &= \left(-i\tilde{B}, -i\tilde{W}^{0}, \tilde{h}_{u}^{0}, \tilde{h}_{d}^{0}\right) \\ \mathcal{M}_{\chi^{\pm}} &= \begin{pmatrix} M_{2} & gv_{d} \\ gv_{u} & \mu \end{pmatrix} & \mathcal{M}_{\chi^{0}} &= \begin{pmatrix} M_{1} & 0 & \frac{g'v_{u}}{\sqrt{2}} & -\frac{g'v_{d}}{\sqrt{2}} \\ 0 & M_{2} & -\frac{gv_{u}}{\sqrt{2}} & -\frac{gv_{d}}{\sqrt{2}} \\ \frac{g'v_{u}}{\sqrt{2}} & -\frac{gv_{u}}{\sqrt{2}} & 0 & -\mu \\ -\frac{g'v_{d}}{\sqrt{2}} & \frac{gv_{d}}{\sqrt{2}} & -\mu & 0 \end{pmatrix} \end{split}$$

Wino-like lightest chargino and neutralino if $M_2 < M_1, \mu$

pMSSM parameter scans reveal (Cahill-Rowley et.al., Phys. Rev. D88, 2013):

- If $\tilde{\chi}_1^0$ DM candidate + current observations fulfilled
- \rightarrow NLSP is usually wino-like chargino
- $ightarrow m_{ ilde{\chi}_1^\pm, ilde{\chi}_1^0}pprox$ 160 MeV
- ightarrow In 25% of these scenarios: ${ ilde \chi}_1^\pm$ decays inside detector

A search for new heavy particles in events with highly ionising, short tracks at the CMS experiment 16

Production feynman diagrams

Chargino track reconstruction effiency

Track reconstruction efficiency for very short tracks 20 - 40%

Fully efficient reconstruction at 30 cm

Reconstruction efficiency for 100 MeV pions ~ 40%

Displaced track reconstruction efficiency between 10-50%

Chargino lifetime reweighting

- Calculation of event weights
- Weights depend on
 - Generated mean lifetime in particle rest frame(\(\tau_{gen}\))
 - Individual proper lifetime of the chargino (t)
 - Targeted mean lifetime (\(\tar{target}\))
 - Number of charginos in the event (i)

A search for new heavy particles in events with highly ionising, short tracks at the CMS experiment 20

		Simulated back	ground samples			Simulated si	gnal samples		Data
Selection	W + jets	$t\overline{t} + jets$	$Z \to \ell \bar{\ell}$	Multijet	m=100GeV c т =10 ст	т=100GeV ст=100 ст	m=500GeV cτ=10 cm	m=500GeV ст=100 ст	MET data
After skim	9.16 ·10 ⁷	1.04 ·10 ⁶	2.21 ·10 ⁷	1.38 ·10 ¹¹	3.41 ·10 ⁵	3.41 · 10 ⁵	3.46 · 10 ²	3.46 · 10 ²	$1.07 \cdot 10^{7}$
Event-based selection:									
Trigger	4.31 ·10 ⁶	1.15 ·10 ⁵	$4.23 \cdot 10^{3}$	4.32 ·10 ⁶	$1.55 \cdot 10^{4}$	$1.49 \cdot 10^{4}$	46.2	46.2	$1.07 \cdot 10^{7}$
Trigger selection	$1.89 \cdot 10^{6}$	5.31 · 10 ⁴	$6.26 \cdot 10^{2}$	9.63 ·10 ⁵	$1.09 \cdot 10^{4}$	$9.83 \cdot 10^{3}$	36.3	35.7	3.94 · 10 ⁶
QCD suppression	$1.11 \cdot 10^{6}$	6.76 ·10 ³	$1.32 \cdot 10^{2}$	$9.55 \cdot 10^{3}$	$7.90 \cdot 10^{3}$	$6.98 \cdot 10^{3}$	27.6	27.1	$1.38 \cdot 10^{6}$
Track-based selection:									
Good quality selection	$1.07 \cdot 10^{6}$	$6.63 \cdot 10^{3}$	$1.32 \cdot 10^{2}$	$9.55 \cdot 10^{3}$	$2.80 \cdot 10^{3}$	$5.38 \cdot 10^{3}$	5.07	20.0	$1.30 \cdot 10^{6}$
Kinematic selection	8.14 ·10 ⁵	5.63 · 10 ³	$1.32 \cdot 10^{2}$	$5.48 \cdot 10^{3}$	$2.54 \cdot 10^{3}$	$4.93 \cdot 10^{3}$	4.73	18.9	$9.51 \cdot 10^{5}$
Lepton/jet veto	$5.02 \cdot 10^{2}$	5.88	0	0	$1.99 \cdot 10^3$	$3.67 \cdot 10^{3}$	3.83	15.0	616
Isolation selection	31.9	0.67	0	0	$1.67\cdot 10^3$	$3.04 \cdot 10^3$	3.39	12.6	119

Optimisation for various benchmark signal models

▶ For each selection in p_T and dE/dx:

$$Z = \frac{\alpha_{\min} \cdot N_{\mathcal{S}}(\mathsf{mass}, \mathsf{c}\tau, p_{\mathsf{T}}^{\mathsf{cut}}, f_{\mathsf{as}}^{\mathsf{cut}})}{\Delta B(p_{\mathsf{T}}^{\mathsf{cut}}, l_{\mathsf{as}}^{\mathsf{cut}})} = 5. \qquad \text{with } \alpha_{\min} = \frac{\sigma_{\min}}{\sigma_{\mathcal{S}}}$$

Mass [GeV]	Lifetime c τ [cm]	Optimal <i>p</i> _T cut [GeV]	Optimal <i>I</i> as cut	$\sigma_{\min} \text{ [pb]}$
100	1	30	0.05	61.596
200	1	20	0.05	43.414
300	1	n/a	n/a	n/a
400	1	n/a	n/a	n/a
500	1	n/a	n/a	n/a
100	10	30	0.05	1.531
200	10	30	0.30	0.561
300	10	30	0.30	0.354
400	10	30	0.30	0.238
500	10	50	0.30	0.201
100	50	50	0.30	0.435
200	50	50	0.30	0.110
300	50	50	0.30	0.063
400	50	50	0.30	0.045
500	50	50	0.30	0.037

Event-based selection	Two global muons with Muons opposite in charge 80 GeV $< M_{inv} (\mu_1, \mu_2) <$	$\begin{array}{l} p_{\mathrm{T}} > 25 \mathrm{GeV} \\ \eta < 2.4 \\ \sum_{\Delta R < 0.4} p_{\mathrm{T}}^{\mathrm{PF} \mathrm{particle}} / p_{\mathrm{T}}(\mu) < 0.12 \\ \frac{\lambda^2}{\mathrm{n_{dof}}} \Big _{\mathrm{global track}} < 10 \\ d0 < 0.2 \mathrm{cm} \\ dz < 0.5 \mathrm{cm} \\ \geq 1 \mathrm{hit} \mathrm{in} \mathrm{the} \mathrm{muon} \mathrm{detector} \\ \mathrm{considered} \mathrm{in} \mathrm{global} \mathrm{fit} \\ \geq 2 \mathrm{hits} \mathrm{in} \mathrm{different} \mathrm{muon} \mathrm{stations} \\ \geq 1 \mathrm{hit} \mathrm{in} \mathrm{the} \mathrm{pixel} \mathrm{detector} \\ \geq 6 \mathrm{hits} \mathrm{in} \mathrm{the} \mathrm{tracker} \mathrm{system} \\ \end{array}$
Candidate track selection	Good quality selection Kinematic selection Lepton/jet veto Isolation selection	

Event-based selection	Two Electrons with Electrons opposite in ch 80 GeV $< M_{inv}(e_1, e_2) <$	$\begin{array}{l} p_{T} > 25 \text{GeV} \\ \eta < 2.5 \\ \sum\limits_{\Delta R < 0.4} p_{T}^{PF \ particle} / p_{T}(e) < 0.15 \\ \text{pass \ conversion \ veto} \\ \text{no \ missing \ inner \ tracker \ hits} \\ \text{good \ MVA \ electron \ as \ defined \ in} \\ \begin{array}{l} \text{harge} \\ < 100 \ \text{GeV} \end{array}$
Candidate track selection	Good quality selection Kinematic selection Lepton/jet veto Isolation selection	

Results for preselection

Channel	$N_{Z ightarrow II}^{ ext{cand trk selection}}$	$N_{Z \rightarrow II}$	$ ho_{fake}$
$egin{array}{c} Z ightarrow \mu ar \mu \ Z ightarrow ear e \end{array}$	403 369	$\begin{array}{c} 6.17 \cdot 10^{6} \\ 5.08 \cdot 10^{6} \end{array}$	$\begin{array}{c} (6.53 \pm 0.33) \cdot 10^{-5} \\ (7.26 \pm 0.38) \cdot 10^{-5} \end{array}$

Systematic uncertainties - fake background

1.) Fake rate uncertainty

- Comparison of ρ_{fake} between $Z \rightarrow \ell \ell + fake$ and W + jets (full analysis selection) with simulated events.
- Uncertanties mainly driven by statistical limitation of simulated samples.
- Lower trigger cuts and remove QCD-multijet cuts

2.) dE/dx shape uncertainty

- Comparison of shape differences in CR and SR in simulated events.
- Uncertainties mainly driven by statistical limitations of simulated samples
- Only candidate track selection applied.

A search for new heavy particles in events with highly ionising, short tracks at the CMS experiment

Leptonic background estimation

Inclusive background estimate

 Determine scaling factors from CR (lepton veto inverted region) to SR in simulation.

$$\blacktriangleright \rho_{MC}^{lepton_i} = \frac{N_{SR}^{trk matched to lepton_i}}{N_{lepton_i veto inverted}}$$

 $\blacktriangleright \text{ N}_{bkg}^{\text{lepton}_{i}, \text{ inclusive in } I_{as}} = \text{N}_{data}^{\text{lepton}_{i} \text{ veto inverted}} \cdot \rho_{MC}^{\text{lepton}_{i}}$

	$\rho_{MC}^{lep_i}$	Nveto inverted CR,data	Ninclusive in I _{as}
electrons muons taus	$ \begin{vmatrix} 1.25^{+1.70}_{-0.77} \cdot 10^{-4} \\ 2.17^{+1.65}_{-0.93} \cdot 10^{-4} \\ < 2.13 \cdot 10^{-2} \end{vmatrix} $	60067 76664 445	$ \begin{vmatrix} 7.49^{+10.19}_{-4.63} \\ 16.64^{+12.64}_{-7.12} \\ < 9.46 \end{vmatrix} $

dE/dx shape

Take I_{as} also from MC (large systematic uncertainties, but..)

Systematic uncertainties - leptonic background

1.) Leptonic scale factor uncertainty

- Derived by tag-and-probe method comparing data and simulation
- Selection of Z → ℓℓ events with one well reconstructed lepton (tag) and one candidate track (probe)
- For μ and e: 80 GeV $< M_{inv}$ (lepton, cand. trk) < 100 GeV
- For τ : 40 GeV < M_{inv} (μ , cand. trk) < 75 GeV and m_T (μ , \not{E}_T) < 40 GeV

$$\blacktriangleright \ \rho^{\mu} = \frac{N_{\rm SR}^{\rm T&P\mu}}{N_{\rm CR,\ \mu\ veto\ inverted}^{\rm T&P}}$$

		Muons	Electrons	Taus
	$N_{\rm SR}^{\rm T\& Plep_i}$	211	319	19
Data	N ^{T&P} CR, lep; veto inverted	$4.10\cdot 10^6$	$3.74\cdot 10^6$	33
	$ ho^{lep_i}$	$(5.14\pm0.35)\cdot10^{-5}$	$(8.52\pm0.48)\cdot10^{-5}$	$(5.76 \pm 1.66) \cdot 10^{-1}$
	N _{SR} ^{T&Plep}	153.9 ± 15.4	125.1 ± 15.8	9.1 ± 4.0
Simulation	N ^{T&P} CR, lep; veto inverted	$(4.284\pm 0.003)\cdot 10^{6}$	$(4.112\pm 0.003)\cdot 10^{6}$	30.9 ± 7.8
	$ ho^{lep_i}$	$(3.59\pm0.36)\cdot10^{-5}$	$(3.04\pm0.39)\cdot10^{-5}$	$(2.95\pm1.49)\cdot10^{-1}$

A search for new heavy particles in events with highly ionising, short tracks at the CMS experiment 28

1.) Leptonic dE/dx shape uncertainty

 Comparison of dE/dx shape between data and simulation in lepton-veto inverted control region

Tau background - visualisation

Muon background - visualisation

Electron background - visualisation

Comparison of low momentum protons

Simulation of ISR:

- Recipe from SUSY group (https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYApprovalProcedures)
- ISR weights are applied in the main analysis
- Weights are varied up and down by up to 25%

Simulation of trigger efficiency

- Done with same method used in Disappearing track search
- > Differences between MC and data in trigger turn-on applied as sys. uncertainty
- Trigger turn-on curves measured with SingleMu dataset
- Simulation of calorimeter isolation
 - Measured in fake enriched control region
 - CR well suited because fake tracks are not correlated to calorimeter deposits
 - Comparison of of simulated and measured selection efficiencies

Simulation of missing middle/inner hits

- Estimated in the muon-veto inverted control region
- CR well suited because muons do not have intrinsic sources of missing hits (cf. electrons and pions)
- Comparison of simulated and measured selection efficiencies
- Simulation of the track reconstruction efficiency
 - Worst case estimation
 - All hits after third hit are removed for well reconstructed muons
 - Track reconstruction is performed again and track reconstruction efficiencies in MC and data are compared

Exemplary limit plots

- Mathematical expression used for decay width from arXiv:hep-ph/9902309
- Decay width expressed in terms of m_{χ˜1}[±], m_{χ˜1}⁰ and m_π
- ► Translation from decay width → mass splitting

Comparison of observed measurements to a hypothesis distribution.

Test statistics derived from integral of squared differences

pathlength [mm]

pathlength [mm]

Pixel energy calibration

Pixel energy calibration

Improvement of background suppression up to an order of magnitude

Comparison to ATLAS results

- Interpretation done in the same models
- Very similar sensitivity in the low lifetime region