Study of the Higgs boson decaying into tau pairs and muon pairs

Shin-ichi Kawada (DESY-FLC)

2016/November/29

FH Fellow Meeting

Introduction

Discovery of Higgs-like boson at the LHC ---> last particle of SM? or beyond SM?

- Goal: model-independent determination of EWSB sector with precise measurements
- mass-coupling relation
- any deviation shows the existence of BSM

The International Linear Collider (ILC)

electron-positron collider

 $\sqrt{s} = 250 - 500 \text{ GeV}$ (upgradable to 1 TeV)

polarized beam (e^- : 0.8, e^+ : \geq 0.3(0.6))

arXiv:1506.07830 [hep-ex], J. Brau's talk @ ICHEP2016

ILC Running Scenario

optimized scenario with considering

- Higgs precise measurements
- Top physics
- New physics search

20 years running with energy range [250-500] GeV ---> then possible 1 TeV upgrade

Integrated Luminosities [fb]

X will depend on physics results from LHC and early ILC

What I worked

Positron source Development of positron source NIMA 672 (2011) 52-66 NIMB 319 (2013) 17-23

Physics & Detectors

- TPC development JINST 8 C11023 (2013) JINST 9 C03002 (2014) - $\gamma\gamma \rightarrow hh$ PRD 85 113009 (2012)
- $h \to \tau^+ \tau^-$ (PhD thesis) EPJC 75:617 (2015)
- $h \rightarrow \mu^+ \mu^-$ (now working)

Study of $h \rightarrow \tau^+ \tau^-$

- Tau is heaviest lepton ---> large BR, large statistics
- Tau mass is well determined ---> small theoretical uncertainty, good probe for precise measurement
- ILC can measure the Higgs boson precisely. But how much?
 - Previous studies were too old arXiv:hep-ph/9910271 (1999) LC-PHSM-2002-003 (2002)
- Need realistic/reliable study with considering...
 - running scenario
 - detector model
 - good analysis tools

Example: $e^+e^- \rightarrow Zh \rightarrow q\bar{q}\tau^+\tau^-$ at 250 GeV

(1) Tau clustering developed tau finder tuned for $q\bar{q}\tau^+\tau^-$

(2) Collinear approximation reconstruct tau pair mass

(3) Durham clustering reconstruct jets

Precision of Higgs Couplings

Inputs (direct, model-independent measurement) σ_{Zh} and $\sigma \times BR(h \rightarrow XX)$

Couplings and total width are obtained from model-independent global-fit (systematic errors included)

most couplings reach $\leq 1\%$ $\Delta g_{htt} \sim 3\%$ with 550 GeV running **Completely model-independent measurement**

arXiv:1506.05992 [hep-ex]

Study of $h \rightarrow \mu^+ \mu^-$

- 1 TeV analysis is done with fully-simulated samples.
- But current preferred running scenario has lots of integrated luminosities at 500 GeV.
- Very challenging study due to small BR of $h \rightarrow \mu^+ \mu^-$
 - ~2.2*10⁻⁴
 - # events ~60
 - But muon gives clean signal signature
- Currently my main work: work in progress

Summary

- Precise measurement of the Higgs boson is very important to uncover not only the last piece of SM but also BSM.
- Working on ILC, especially Higgs physics analysis
 - Obtained reliable results for $h \rightarrow \tau^+ \tau^-$ channel
 - Work in progress for $h \rightarrow \mu^+ \mu^-$ channel