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Higgs Boson Property 
Measurements in the Diphoton 

Decay Channel at ATLAS



Run-II ATLAS data: 3.2 fb-1 (2015) + 33.2 fb-1 (2016) = 36.4 fb-1 ready for analysis! 
Data collected at a higher centre-of-mass energy (13 TeV): 

Increased sensitivity to Higgs boson production
Increased sensitivity to tails of differential distributions

Run-II ATLAS & LHC
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Higgs boson production & decay
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ggF: ~ 87% VH ≣ WH or ZH: ~ 5%VBF: ~ 7.2% ttH: ~ 0.6% 

Production:

Decay:

Dag Gillberg 

Production & decay of Higgs bosons

gg→H Vector Boson 
Fusion, VBF

VH ≡ WH or ZH ttH
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Decay 
This determines the signature that the Higgs boson leaves.  
That is, what we look for to find the Higgs boson
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H→γγ photon identification

4Dag Gillberg 

Higgs boson candidate

H � ��

⇥ ⇥ 40 fb

⇥ 70 signal events
expected in 4.9 fb�1

ggF: 87%
VBF: 7%
W/ZH: 5%

m2
�� =

2E1E2(1� cos�)

R. Ospanov: http://cdsweb.cern.ch/record/1436122This, and several of the following slides from

H

γ

γ

Photon energy and direction 
accurately measured in  
the EM calorimeters (green) 

Most important quantity: 
Diphoton invariant mass  
mγγ, reconstructed from  
photon 4-momenta 

   mγγ2 = ( pγ1 + pγ2 )2 

γ

H

γ

γ

γ

H � ��: photon identification and isolation

I Fine � granularity in the
strip layer to reject ⇥0

I EM shower shape to reject
fake photons from jets
� O(8000) jet rejection
85% photon e�ciency

I Longitudinal segmentation
to measure shower
direction and to improve
energy measurement

I Select isolated photons

I Excellent description of data by
MC (cross-check)

I Uncertainty on event normalization
from the isolation cut is 5%

R. Ospanov

Fake photon suppression

Lots of other particles leave signals  
that look similar to photons from the 
Higgs boson 

Such particles are suppressed by 
looking at the shape of energy 
deposits in the detector

fake! 
π0 → γγ

Photon from 
Higgs

14

Discrimination against fake photons
Many other particles (eg. π0) can produce signals that are similar 
to photons produced by the Higgs boson
Discrimination against such particles is achieved by examining 
the shape of energy depositions in the detector

Photon identification is achieved using a set of variables that describe 
the shape of the energy deposition in the calorimeter
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• For explicit definitions see Appendix A of Phys. Rev. D83, 052005 (2011). The strip layer variables are 
computed from an array of cells that spans one or two rows in ϕ depending on the position in ϕ of the cluster 
barycenter.



Signal & background 
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γγ,  γ-jet,  jet-jet
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S + B fit to mγγ spectrum: functional form for S + B
minimize bkg bias / uncertainty
account for uncertainties in the signal model via 
nuisance parameters

p

p

H
t

γ

γ
g

g
t

γ

p

p

H

t
γ

γ

g

g

t

γ
p

p

H
t

γ

γ
g

g
t

γγ

ATLAS-CONF-2016-067

https://cds.cern.ch/record/2206210


Data-driven background composition done for each fiducial region and bin measured 

Composition corresponding to the inclusive fiducial region shown above:

80% γγ,   17% γ-jet,   3% jet-jet

Diphoton background composition
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ATLAS-CONF-2016-067

https://cds.cern.ch/record/2206210
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�i =
⌫sigi

Ci ·Ai ·B · Lint

Number of signal events 
measured in data

Cross section in fiducial 
region or bin of a 

differential distribution

depends on event 
selection and decay 

channel

Cross section

Goal: measure model independent 
detector-corrected event yields

Integrated 
luminosity

Branching fraction

Correction for detector 
resolution and 
inefficiencies Acceptance 

�fid,i =
⌫sigi

Ci · Lint

Overview of Cross Sections



Measuring Cross Sections
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Categorize diphoton events into fiducial regions 

Truth-level fiducial definition chosen to mirror 
reco selection to minimize model dependence

arXiv:1407.4222

https://arxiv.org/abs/1407.4222


Measuring Cross Sections
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Categorize diphoton events into fiducial regions 

Truth-level fiducial definition chosen to mirror 
reco selection to minimize model dependence

Extract Higgs event yield via a signal plus 
background fit to the mγγ spectrum

Higgs mass fixed to Run-I ATLAS+CMS best fit 
value   (mH = 125.09 ± 0.24 GeV )

�fid,i =
⌫sigi

ci · Lint

arXiv:1407.4222

https://arxiv.org/abs/1407.4222


Measuring Cross Sections
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Correct signal yields for detector 
resolution and inefficiencies via 
unfolding

ci =
ndet
i

nptcl
i

�fid,i =
⌫sigi

ci · Lint

arXiv:1407.4222

https://arxiv.org/abs/1407.4222


Measuring Cross Sections
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Apply correction for experimental effects 
and normalize to integrated luminosity  

Cross section in a fiducial region or bin of 
a differential distribution

�fid,i =
⌫sigi

ci · Lint

�fid,i =
⌫sigi

ci · Lint

�fid,i =
⌫sigi

ci · Lint

arXiv:1407.4222

https://arxiv.org/abs/1407.4222


Higgs boson kinematics: pTγγ
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Good agreement between data and theory
somewhat harder Higgs pT spectrum in data (also observed in Run-I), 
though not statistically significant given the uncertainties
data supports theory hypothesis for a CP-even scalar particle 

ATLAS-CONF-2016-067

https://cds.cern.ch/record/2206210


Cross section vs. √s
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 2011 
data

 2012 
data

 2015+2016 
data

Measurements in agreement with theoretical predictions for a 
125 GeV SM Higgs boson 

σ in full          
phase-space

ATLAS-CONF-2016-067

https://cds.cern.ch/record/2206210


Effective Field Theory
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Probe BSM effects in Higgs sector using an effective field theory approach:

• Unfolded differential distributions sensitive to the event kinematics 

• Look for changes / distortions in the kinematic spectra of Higgs events due 
to new kinds / structures of the Higgs couplings due to new physics (NP)

HComb HGam EFT

The effective Lagrangian (I)

4

)
•  Our)default)choice)in)Run11)was)the)Higgs)EffecOve)Lagrangian)(39)operators))

)
–  Results)can)be)translated)into)other)bases))
–  Not)parOcularly)wedded)to)this)basis,)could)choose)others)if)good)reason)given)

•  LSILH)and)LCP)are)CP1even)and)CP1odd)operators)that)affect)the)Higgs)sector)
•  LF1)and)LF2)affect)the)fermionic)couplings)in)the)SM)
•  LG)affect)the)SM)gauge)couplings.)

)

The)effecOve)Lagrangian)(I))
+

cg

SM NP
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Effective Field Theory

15

Figure 2: Ratio of differential cross sections predicted by specific choices of Wilson coefficient to the differential cross
sections predicted by the SM.

the VBF+VH production channel and show large shape changes in all of the studied distributions.3 The
∆φ j j distribution is known to discriminate between CP-odd and CP-even interactions in the VBF production
channel [34].

5 Limit-setting procedure

Limits on the Wilson coefficients are set by constructing a χ2 function

χ2 =
(

σ⃗data − σ⃗pred
)T
C−1

(

σ⃗data − σ⃗pred
)

,

where σ⃗data and σ⃗pred are vectors from the measured and predicted cross sections of the five analysed ob-
servables, and C = Cstat + Cexp + Cpred is the total covariance matrix defined by the sum of the statistical,
experimental and theoretical covariances. The predicted cross section σ⃗pred and its associated covariance
Cpred are continuous functions of Wilson coefficients. Scans of one or two Wilson coefficients are carried
out and the minimum χ2 value, χ2min, is determined. The confidence level (CL) of each scan point can be
calculated as

1 −CL = n
∫ ∞

χ2(ci)−χ2min
dx f (x;m) ,

3 Form factors are sometimes used to regularise the change of the cross section above a momentum scaleΛFF. This was investigated
by reweighting the VBF+VH samples using form-factor predictions from VBFNLO [33]. The impact on the c̄HW and c̃HW limits
are negligible for ΛFF >1 TeV.

6

SM

Normalization differences for gluon fusion production mode 

Shape differences for VBF + VH production modes 

arXiv:1508.02507

https://arxiv.org/abs/1508.02507


Summary
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A number of cross section / Higgs property measurements have 
been made using both the Run-I and Run-II datasets

No significant deviations from the SM are observed

Diphoton measurements combined with those from the 4l 
channel to improve precision

13 TeV dataset now ~2.7 times larger than ICHEP dataset 

New measurements in the pipeline

Precision tests of the SM and searches for new physics BSM

Thank you for your attention!



Backup
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Photon Identification Inputs
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Photon identification (ID) is achieved using nine (isEM) variables that describe 
the shape of the energy deposition in the calorimeter

shapes depend on direction & conversion status
Photon ID inputs built from energy deposits in layers 1 & 2 of the EM calorimeter 
and energy leakage into the hadronic calorimeter 
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• For explicit definitions see Appendix A of Phys. Rev. D83, 052005 (2011). The strip layer variables are 
computed from an array of cells that spans one or two rows in ϕ depending on the position in ϕ of the cluster 
barycenter.

ATL-COM-PHYS-2013-600

https://cds.cern.ch/record/1545866/files/ATL-COM-PHYS-2013-600.pdf


Event and Object selection
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reconstruction-level selection: 
GRL and data quality 
trigger: HLT_g35_loose_g25_loose 
Consider 2 highest pT photons 
|η| < 2.37 (exclude 1.37≤|η|<1.52) 
pT/mγγ > 0.35 (0.25) 
Tight photon identification  
Isolated: eg. 13 TeV 

track: pTcone20<0.05×pT  
calo: TopoETcone20<0.065×pT 

mγγ ∈ [105, 160) GeV

particle-level fiducial:  
Consider 2 highest pT photons 
 |η| < 2.37  

(exclude 1.37≤|η|<1.52) 
pT/mγγ > 0.35 (0.25) 
ET charged (ΔR<0.2)<0.05×pT 
mγγ ∈ [105, 160) GeV

Jets (anti-kT, R=0.4):  

pT > 25 GeV for |η|< 2.4  

pT > 30 GeV for 2.4<|η|< 4.4  

Jet vertex tagger used to reject pile-up  

b-jet tagger to iden2fy heavy-flavour  

Muons:  
pT > 10 GeV and |η|< 2.7  

Electrons:  
pT > 10 GeV and |η|< 2.47 (excluding 
1.37<|η|<1.52)  

Missing transverse momentum: 
reconstructed from photons, jets, leptons 
and tracks



Fiducial Cross Sections
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The total background contribution to the Higgs signal is obtained from data via a S+B 
fit to the mγγ distribution in each fiducial region or bin of a differential distribution

Background template constructed from high stats γγ MC, utilizing data-driven 
templates for γ-jet and jet-jet contributions

combined after normalizing to data-driven scale factors

analytic model for the background

parameterization chosen that minimizes bias in the signal extraction

Data-driven method to estimate background composition in the signal region 

photon isolation and identification selection criteria inverted to define regions 
enriched with signal or background

composition of bkg process entering the signal region estimated by extrapolating the 
process rates in the CR’s into the signal region

mγγ background modelling

21



2x2D Sideband Method
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 �+jet  jet+jet

 ��  jet+�

AD CD BD DD

AB CB BB DB

AC CC BC DC

AA CA BA DA

TL’ L’L’ TL’ L’L’

TT L’T TT L’T

TL’ L’L’ TL’ L’L’

TT L’T TT L’T

subleading γ 
not isolated

subleading γ 
isolated

leading γ 
not isolated

leading γ 
isolated

Red: leading pT photon
Blue: sub-leading pT photon
A: Tight and Isolated
B: Tight and not Isolated
C: not Tight and Isolated
D: not Tight and not Isolated

region  
DD 
AD 
DA 
AA

enriched with 
 jet-jet 
γ-jet 
jet-γ 
γγ

1 signal region and 15 
background control regions

Photon efficiencies obtained 
from MC

solve 16 equations to extract 
the yields of each process 
entering the signal region, as 
well as the jet efficiencies



Signal model
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Double-sided Crystal Ball function
Gaussian core with power law tails 

Signal shape parameters determined from fitting simulated samples 

arXiv:1407.6583

https://arxiv.org/abs/1407.6583


Isolation is applied at detector-level 

map the detector-level isolation value to a corresponding particle-level 
isolation energy 

apply particle-level isolation to help mitigate the dependence of the 
correction factor on the production mode 

ET  of the 4-vector sum of charged particles within a cone of R < 0.2

Particle-level isolation

24

Chapter III.3. Higgs Fiducial Cross Sections 477

 

C<DBDEF& G&?H@IJ&;'0#2'+*&!+(K&;)"2. &¾ Truth isolation 
• Reco 6 GeV calorimeter iso cut mapped to 14 GeV truth iso cut 
• A track iso cut also applied at reco, no corresponding truth cut 

¾ Extra fiducial volumes included which apply additional criteria in order to 
enhance certain physics 
• Jetty events Njets ≥ 1,2 
• VBF loose at least two jets with mjj > 400 GeV and |Δy(jj)| > 2.8 
• VBF tight VBF loose + |Δφ(γγ,jj)| > 2.6 
• Leptony events Ne + Nμ ≥ 1 
• DM enhanced ET

miss > 80 GeV   limits set 
 

Comments on H → γγ fiducial 
volume  

  

24/6/15 9 HXSWG Fiducial Task Force 

• Truth iso = the 4-vector sum of particles 
within a cone of R < 0.4, excluding μ,ν, then 
taking the ET 

• Cut value was determined by pairing truth 
and reco photons, plotting their isolation 
energies, and profiling slices of this 2D 
distribution to map 6 GeV reco onto 14 GeV 
truth (right) 

Figure 250: (left) Illustration for correction factor which maps reconstructed yields to fiducial cross sections
without (red) and with (green) imposing a particle level isolation criterion are shown. Imposing particle level
isolation significantly reduces the differences between different Higgs boson production modes which minimizes
the model dependence. (right) The procedure to map a reconstructed isolation criterion to a particle level isolation
criterion using profiles is illustrated.

similar criterion which duplicates a similar requirement using stable particles. Imposing such drastically11344

reduces the underlying model dependence: this can be readily understood if one compares for example11345

Higgs boson production with gluon fusion versus in association with a top quark pair: H ! �� photons11346

from the latter fail more often the isolation criterion due to the large hadronic activity and thus have a11347

lower reconstruction efficiency. Figure 250 shows the correction factors mapping reconstructed yields11348

into fiducial cross sections with and without imposing a similar particle level isolation cut. A parti-11349

cle level isolation criterion can be imposed by summing around a fixed cone the energies of all stable11350

particles and events are similarly rejected when the isolation energy is larger than a certain threshold.11351

The exact cut can be tuned such that the model dependence becomes minimal, i.e. that the efficiency11352

difference between rejecting a reconstructed event and a true event is very similar: In Figure 250 the11353

correlation between true and reco isolation is shown, and an illustrative reconstruction cut is mapped to11354

a given true value using a profile of both observables. The effect of imposing this criterion is illustrated11355

as well, resulting in near matching correction factors for all Higgs boson production processes.11356

III.3.5.a.ii Signal contributions from outside of the fiducial phase space11357

At the reconstruction level, additional signal contribution from events that do not originate from the fidu-11358

cial phase space can arise due to detector resolution effects that cause differences between the quantities11359

used for the fiducial phase space definition (such as the lepton or photon isolation, jet transverse momen-11360

tum, missing transverse momentum etc.) and the analogous quantities used for the event selection. This11361

contribution should be treated as background and subtracted before the unfolding procedure is applied.11362

Hereafter we refer to this contribution as the “nonfiducial signal” contribution. It has been shown in sim-11363

ulation that the shape of these events is typically very similar to the shape of the fiducial signal. In order11364

to minimise the model dependence of the measurement - it should be studied how to optimise fiducial11365

phase space definition to minimise the effect that arises from nonfiducial signal’ contribution, and how11366

to experimentally treat this contribution in the measurement. Studies in simulation have shown that this11367

component can vary from just few percent e.g. for the gg ! H production mode to several percent for11368

the tt̄� production mode [965, 966]. The variation of this fraction between different signal models can11369

be included in the model dependence estimation.11370

The nonfiducial signal contribution deserves special attention when the observables used to define11371

the signal region have poor experimental resolution (such as missing transverse energy, transverse mo-11372

mentum of jets, etc.). In those cases effects of migration of the signal events can be large, and it might11373

Handbook of LHC Cross Sections: YR4
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taking the ET 
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and reco photons, plotting their isolation 
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truth (right) 

Figure 250: (left) Illustration for correction factor which maps reconstructed yields to fiducial cross sections
without (red) and with (green) imposing a particle level isolation criterion are shown. Imposing particle level
isolation significantly reduces the differences between different Higgs boson production modes which minimizes
the model dependence. (right) The procedure to map a reconstructed isolation criterion to a particle level isolation
criterion using profiles is illustrated.

Higgs boson production with gluon fusion versus in association with a top quark pair: H ! �� photons
from the latter fail more often the isolation criterion due to the large hadronic activity and thus have a
lower reconstruction efficiency. Figure 250 shows the correction factors mapping reconstructed yields
into fiducial cross sections with and without imposing a similar particle level isolation cut. A parti-
cle level isolation criterion can be imposed by summing around a fixed cone the energies of all stable
particles and events are similarly rejected when the isolation energy is larger than a certain threshold.
The exact cut can be tuned such that the model dependence becomes minimal, i.e. that the efficiency
difference between rejecting a reconstructed event and a true event is very similar: In Figure 250 the
correlation between true and reco isolation is shown, and an illustrative reconstruction cut is mapped to
a given true value using a profile of both observables. The effect of imposing this criterion is illustrated
as well, resulting in near matching correction factors for all Higgs boson production processes.

III.3.5.a.ii Signal contributions from outside of the fiducial phase space
At the reconstruction level, additional signal contribution from events that do not originate from the fidu-
cial phase space can arise due to detector resolution effects that cause differences between the quantities
used for the fiducial phase space definition (such as the lepton or photon isolation, jet transverse momen-
tum, missing transverse momentum etc.) and the analogous quantities used for the event selection. This
contribution should be treated as background and subtracted before the unfolding procedure is applied.
Hereafter we refer to this contribution as the “nonfiducial signal” contribution. It has been shown in sim-
ulation that the shape of these events is typically very similar to the shape of the fiducial signal. In order
to minimize the model dependence of the measurement - it should be studied how to optimize fiducial
phase space definition to minimize the effect that arises from nonfiducial signal’ contribution, and how
to experimentally treat this contribution in the measurement. Studies in simulation have shown that this
component can vary from just few per cent e.g. for the gg ! H production mode to several per cent for
the tt̄� production mode [964, 965]. The variation of this fraction between different signal models can
be included in the model dependence estimation.

The nonfiducial signal contribution deserves special attention when the observables used to define
the signal region have poor experimental resolution (such as missing transverse energy, transverse mo-
mentum of jets, etc.). In those cases effects of migration of the signal events can be large, and it might
be worth studying if the measurement can benefit (in terms of the overall model dependence) from re-
laxing the requirements on such observables at the fiducial level with respect to the reconstruction level.

https://arxiv.org/pdf/1610.07922v1.pdf


Higgs boson kinematics: pTγγ
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8 TeV 13 TeV 
arXiv:1407.4222 ATLAS-CONF-2016-067

https://arxiv.org/abs/1407.4222
https://cds.cern.ch/record/2206210


Hadronic (Jet) Activity
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Good agreement between data and theory for variety of predictions

ATLAS-CONF-2016-067

https://cds.cern.ch/record/2206210


NP correction and acceptance factors 
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DRAFT

10. Corrections to theory871

Theoretical predictions are done at parton level. The LHC_XS calculation makes predictions for the872

inclusive phase space where no kinematic or isolation cuts are applied. This phase space is therefore873

identical at both particle and parton levels. An acceptance factor, ↵fid is used to map the inclusive phase874

space on to the particle level fiducial volume. This factor must be applied to the LHC_XS prediction in875

order to compare it to the measured fiducial cross section.876

Section 10.1 gives details of this correction factor and the QCD and PDF uncertainties associated with it.877

Section 10.2 describes the additional uncertainty due to the Monte Carlo modelling which includes the878

uncertainty due to the modelling of hadronisation and the underlying event.879

10.1. ↵kin880

The correction for the parton level kinematic acceptance is applied in a similar manner to the corrections881

described in Sections 7. The cross-section, � is determined using a Monte Carlo simulation with particle882

level final states. This is done twice: once for events in the full phase space, �inc and once for those in883

the fiducial phase space, �fid. The acceptance factor, ↵fid is taken as the ratio between the fiducial and884

inclusive cross sections as shown in Equation 17.885

↵fid =
�fid(pp! H ! ��, particle level)

�inc(pp! H ! ��, parton or particle level)
(17)

The central values of the acceptance factors are calculated using Powheg(CT14) LHE files showered with886

Pythia8 for gluon fusion and VBF, and Pythia8 for WH, ZH and ttH. These yield the acceptance factors887

shown in Table 15.888

Production Mode Acceptance Factor

ggF 0.5729
VBF 0.5733
WH 0.4946
ZH 0.5048
ttH 0.5843

Combined 0.5698

Table 15: Table showing the particle level fiducial acceptances.

The QCD scale and PDF modelling uncertainties are considered as uncertainties on the acceptance factor.889

For the QCD scale uncertainties 8 scale variations on the ggF and VBF LHE files were considered and890

the envelope taken as the uncertainty. To calculate the PDF uncertainty the CT14 eigenvectors are added891

in quadrature using the Hessian method and scaled by 1
1.642 to take them to the 68 % confidence level.892

These provide a band of 52 variations on the nominal PDF set. Additionally the envelope of the CT10,893

MMHT2014nlo68cl and NNPDF30_nlo_as_0118 PDF sets was taken as a second band of PDF variations.894

These two bands were added in quadrature to obtain the final PDF variation. The resulting QCD and PDF895

uncertainties on the combined ggF + VBF sample are combined are shown in Table 16.896

27th November 2015 – 21:27 40

Detector

Observed Events 
Detector Phase-space  

Signal Yield  
Detector Phase-space  

Particle-level Fiducial 
Phase-space 

Theory

Parton-level Full 
Phase-space

fiducial acceptance factors (αfid)

selection efficiency of the particle level 
fiducial volume (kinematic cuts and 
particle-level isolation)

parton-level inclusive theoretical 
predictions ➜ particle-level fiducial 
predictions

αfid: ratio between the fiducial and 
inclusive cross sections:



The Effective Lagrangian

28

N
o

t
r
e
v

i
e
w

e
d

,
f
o

r
i
n

t
e
r
n

a
l

c
i
r
c
u

l
a
t
i
o

n
o

n
l
y

The LSILH is defined as59

LSILH =
cH

2v2 @
µ ⇥�†�
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⇥
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where � is the Higgs doublet, Gµ⌫ , Wµ⌫ and Bµ⌫ are gauge field strength tensors for the gluon,60

photon and weak bosons, respectively. The Wilson coe�cients c are free parameters, � stands for61

the Higgs quartic coupling and yu , yd and y` are the 3 ⇥ 3 Yukawa coupling matrices in flavour62

space. In this expression, the U (1)Y , SU (2)L and SU (3)c coupling constants are denoted by g0, g63

and gs , respectively, whereas the generators of SU (2) in the fundamental representation are given64
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where the HGµ⌫ , HWµ⌫ and HBµ⌫ are dual field strength tensors defined as HXµ⌫ =
1
2 ✏ µ⌫⇢� X ⇢� .67

In the H ! �� channel we can probe in principle 12 coe�cients from the SILH and CP conjugate
Lagrangian. These are

c� , c̃� , cg , c̃g , cT , cB, cH , cW , cHW , c̃HW , cHB and c̃HB . (5)

From these, the cT coe�cient has been constrained at 95% CL by LEP data to be �0.0015 < cT <68

0.0022 [5]. Furthermore, the Z-boson mass constrains the linear combination of cT and c� [5],69

and so the cT coe�cient is not studied in this analysis. The combination of cW and cB has been70

constrained by the LEP data to be �0.0014 < cW + cB < 0.0019. As both coe�cients are found71

to have a small impact on the normalisation and shapes of the distributions, they are not studied72

further in this paper. Finally, the cH parameter is observed to have a very small e↵ect on the cross73

sections and results are not presented for this parameter either.74

The remaining Wilson coe�cients fall into two categories:75
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the Higgs quartic coupling and yu , yd and y` are the 3 ⇥ 3 Yukawa coupling matrices in flavour62

space. In this expression, the U (1)Y , SU (2)L and SU (3)c coupling constants are denoted by g0, g63

and gs , respectively, whereas the generators of SU (2) in the fundamental representation are given64
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where the HGµ⌫ , HWµ⌫ and HBµ⌫ are dual field strength tensors defined as HXµ⌫ =
1
2 ✏ µ⌫⇢� X ⇢� .67

In the H ! �� channel we can probe in principle 12 coe�cients from the SILH and CP conjugate
Lagrangian. These are

c� , c̃� , cg , c̃g , cT , cB, cH , cW , cHW , c̃HW , cHB and c̃HB . (5)

From these, the cT coe�cient has been constrained at 95% CL by LEP data to be �0.0015 < cT <68

0.0022 [5]. Furthermore, the Z-boson mass constrains the linear combination of cT and c� [5],69

and so the cT coe�cient is not studied in this analysis. The combination of cW and cB has been70

constrained by the LEP data to be �0.0014 < cW + cB < 0.0019. As both coe�cients are found71

to have a small impact on the normalisation and shapes of the distributions, they are not studied72

further in this paper. Finally, the cH parameter is observed to have a very small e↵ect on the cross73

sections and results are not presented for this parameter either.74

The remaining Wilson coe�cients fall into two categories:75
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these samples, for each bin of each distribution, and provides a parameterisation of the effective Lagrangian
prediction. The parameterisation function is determined using 11 samples when studying a single Wilson
coefficient, whereas 25 samples are used when studying two Wilson coefficients simultaneously. As the
Wilson coefficients enter the effective Lagrangian in a linear fashion, second-order polynomials are used
to predict the cross sections in each bin. The method was validated by comparing the differential cross
sections obtained with the parameterisation function to the predictions obtained with dedicated event samples
generated at the specific point in parameter space.

The model implemented in FeynRules fixes the Higgs boson width to be that of the SM, ΓH = 4.07 MeV
[3]. The cross sections are scaled by ΓH/(ΓH +∆Γ), where ∆Γ is the change in partial width due to a specific
choice of Wilson coefficient. The change in partial width is determined for each Higgs coupling using the
partial-width calculator in Madgraph5 and normalised to reproduce the SM prediction from Hdecay [24].

The leading-order predictions obtained from Madgraph5 are reweighted to account for higher-order QCD
and electroweak corrections to the SM process, assuming that these corrections factorise from the new phys-
ics effects. The differential cross section as a function of variable X for a specific choice of Wilson coefficient,
ci is given by

dσ
dX
=

∑

j

(dσ j
dX

)ref
·
(dσ j
dX

)MG5

ci
/

(dσ j
dX

)MG5

ci=0
,

where the summation j is over the different Higgs boson production mechanisms, ‘MG5’ labels the Mad-
graph5 prediction and ‘ref’ labels a reference sample for SM Higgs boson production.

The reference sample for Higgs boson production via gluon fusion is simulated using MG5_aMC@NLO [25]
with the CT10 parton distribution function [26]. The H + n-jets topologies are generated using next-to-
leading-order (NLO) matrix elements for each parton multiplicity (n = 0, 1 or 2) and combined using the
FxFx merging scheme [27]. The parton-level events are passed through Pythia8 [28] to produce the hadronic
final state using the AU2 parameter set [29]. The sample is normalised to the total cross section predicted
by a next-to-next-to-leading-order plus next-to-next-to-leading-logarithm (NNLO+NNLL) QCD calculation
with NLO electroweak corrections applied [3]. The reference sample for Higgs boson production via vector-
boson fusion (VBF) is generated at NLO accuracy in QCD using the Powheg Box [30]. The events are
generated using the CT10 parton distribution function (PDF) and Pythia8 with the AU2 parameter set. The
VBF sample is normalised to an approximate-NNLO QCD cross section with NLO electroweak corrections
applied [3]. The reference samples for Higgs boson production in association with a vector boson (VH,
V=W ,Z) or a top–antitop pair (tt̄H) are produced at leading-order accuracy using Pythia8 with the CTEQ6L1
PDF and the 4C parameter set [21]. The ZH and WH samples are normalised to cross sections calculated at
NNLO in QCD with NLO electroweak corrections, whereas the tt̄H sample is normalised to a cross section
calculated to NLO in QCD [3].

The ratio of the differential cross sections to the SM predictions for some representative values of the Wilson
coefficients are shown in Fig. 2. The impact of the c̄g and c̃g coefficients are presented for the gluon fusion
production channel and show a large change in the overall cross section normalisation. The c̃g coefficient
also changes the shape of the ∆φ j j distribution, which is expected from consideration of the tensor structure
of CP-even and CP-odd interactions [31, 32]. The impact of the c̄HW and c̃HW coefficients are presented for
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To account for this a total uncertainty of 5.6%, assumed to be fully correlated among all bins and303

observables.304

The theory covariance is rebuilt for each working point using the quoted relative uncertainties and305

the predicted test cross sections.306

6. Limit setting procedure307

Limits on Wilson coe�cients are set by minimizing the �2 functionf
~xdata � ~xhypo(ci )

g
C�1

f
~xdata � ~xhypo(ci )

g
(13)

with C = Cstat+Csyst+Ctheo the summed statistical, systematic and theoretical covariance, including308

the cross correlations described in Sec. 5, ~xdata the vector of measured fiducial cross sections, and309

~xhypo the prediction vector, constructed as described in Section 4, c.f. Eq. 6.310

Wilson coe�cients are marginalized one at a time, by fixing all other coe�cients at their SM value
ci = 0. The corresponding 1 - CL values are obtained by determining the value of ��2(ci ) =
�2(ci ) � �2

min where �2(ci ) is the value of Eq. 13 evaluated at ci , and �2
min the global minimum of

Eq. 13. The 1 � CL value is then given by

1 � CL =
Z 1

��2
�2(x; 1 d.o.f.) dx . (14)

For the simultaneous scan of two coe�cients, all other coe�cients than the ones of interest are311

fixed at their SM value, ci = 0. The 68% allowed region is given by the region with scan points312

such taht ��2 < 2.37.313

To quote CLs limits, the obtained CL value is penalized by the probability of the Standard Model,
i.e.

1 � CLs = 1 � CL

1 � pSM
, (15)

where pSM is calculated from the �2 value of the Standard Model prediction, i.e.

pSM =

Z 1

�2
SMobs

�2(x; n d.o.f.) , (16)

with n the number of bins used in the test. The numerical value obtained from the SM base line
prediction is

pSM = 40.6% (40.3%) . (17)

with (and without) the full theory covariance included.314

22

Differential cross section as a function of variable X for a specific choice of 
Wilson coefficient, ci is given by:

Full covariance matrix: 
Cstat. + Csyst. + Ctheo.

Set 1-CL limits on Wilson coefficients 
by minimizing the χ2 between data 
and MC (perform scan across ci): 

Vector of 
predictions from 

ProfDriver

Vector of measured 
cross sections

Analysis Sequence (II)

Figure 2: Ratio of differential cross sections predicted by specific choices of Wilson coefficient to the differential cross
sections predicted by the SM.

the VBF+VH production channel and show large shape changes in all of the studied distributions.3 The
∆φ j j distribution is known to discriminate between CP-odd and CP-even interactions in the VBF production
channel [34].

5 Limit-setting procedure

Limits on the Wilson coefficients are set by constructing a χ2 function

χ2 =
(

σ⃗data − σ⃗pred
)T
C−1

(

σ⃗data − σ⃗pred
)

,

where σ⃗data and σ⃗pred are vectors from the measured and predicted cross sections of the five analysed ob-
servables, and C = Cstat + Cexp + Cpred is the total covariance matrix defined by the sum of the statistical,
experimental and theoretical covariances. The predicted cross section σ⃗pred and its associated covariance
Cpred are continuous functions of Wilson coefficients. Scans of one or two Wilson coefficients are carried
out and the minimum χ2 value, χ2min, is determined. The confidence level (CL) of each scan point can be
calculated as

1 −CL = n
∫ ∞

χ2(ci)−χ2min
dx f (x;m) ,

3 Form factors are sometimes used to regularise the change of the cross section above a momentum scaleΛFF. This was investigated
by reweighting the VBF+VH samples using form-factor predictions from VBFNLO [33]. The impact on the c̄HW and c̃HW limits
are negligible for ΛFF >1 TeV.
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equidistant or random
sampling of NP points
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4 The Professor method

To summarise, the rough formalism of systematic generator
tuning is to define a goodness of fit (GoF) function between
the generated and reference data, and then to minimise
that function. The intrinsic problem is that the true fit
function will certainly not be analytic and any iterative
approach to minimisation will be doomed by the expense
of evaluating the fit function at a new parameter-space
point. What we require is an optimisation method designed
for very computationally expensive functions whose form
is not known a priori. Parameterisation-based optimisa-
tion meets these criteria by using numerical methods to
mimic the behaviour of an expensive function by using
inexpensive ones, and by being amenable to parallelisation
in the critical stages. The details to be described in this
section are: the choice of general parameterisation func-
tion, the method for fitting the general function to the
specific response of a MC event generator, the goodness of
fit function to be used, and the method of maximising its
quality.

4.1 The parameterised response function

As already mentioned, the function to be parameterised
is not the overall goodness of fit function between the
simulation and the reference data, but the large set of
observable bin values for every bin, b, in every distribution.
Accordingly, the output of the first stage of Professor is a
set of functions f

(b)(p), which model the true MC response,
MC

b

, of each observable bin to changes in the P -element
parameter vector, p.

This ensemble of parameterisations is useful in two
ways: first (and most importantly), it provides safety
against deviations from the form of the parameterising
function, since such deviations are not likely to be corre-
lated between a majority of the bins in normal regions of
parameter space. This incoherence of failure to describe
the bin-wise generator response ensures that the aggre-
gated measure of generator modelling is faithful to the true
behaviour. Second, by breaking the problem down to a
fine-grained level, it is possible to select particular regions
of distributions as more interesting than the rest — say,
the peak of the Z p? spectrum or the thrust distribution,
which are particularly sensitive to QCD modelling.

To account for lowest-order parameter correlations, a
polynomial of at least second-order is used as the basis for
bin parameterisation:

MC
b

(p) ⇡ f

(b)(p) = ↵

(b)

0

+
X

i

�

(b)

i

p

0
i

+
X

ij

�

(b)

ij

p

0
i

p

0
j

,

(1)

where the shifted parameter vector p

0 ⌘ p� p

0

.
The number of parameters and the order of the polyno-

mial determine the number of coe�cients to be determined.
For a second order polynomial in P parameters, the number
of coe�cients is

N

(P )

2

= 1 + P + P (P + 1)/2, (2)

Num params, P N (P )
2 (2nd order) N (P )

3 (3rd order)

1 3 4
2 6 10
4 15 35
6 28 84
8 45 165
10 66 286

Table 1: Scaling of number of polynomial coe�cients
N

(P )

n

with dimensionality (number of parameters) P , for
polynomials of second order (n = 2) and third order (n =
3).

since only the independent components of the matrix term
are to be counted. For a general polynomial of order n, the
number of coe�cients is

N

(P )

n

= 1 +
nX

i=1

1
i !

i�1Y

j=0

(P + j). (3)

How the number of parameters scales with P for 2nd and
3rd order polynomials is tabulated in Table 1.

A useful feature of using a polynomial for the fit func-
tion, other than its general-purpose robustness, is that the
actual choice of p

0

is irrelevant: a shift in the reference
point simply redefines the {↵,�, �} coe�cients, but the
function remains the same. Hence we are free to choose
a numerically stable value within each parameter’s cho-
sen range without loss of generality: we use the centre of
the hypercube [p

min

,p

max

], as will be defined in the next
section.

4.2 Fitting the response function

Given a general polynomial, we must now determine the
coe�cients ↵,�, � for each bin so as to best mimic the true
generator behaviour. This could be done by a Monte Carlo
numerical minimisation method, but there would be a dan-
ger of finding sub-optimal local minima, and automatically
determining convergence is a potential source of problems.
Fortunately, this problem can be cast in such a way that
an e�cient and deterministic method can be applied.

One deterministic way to determine the polynomial
coe�cients would be to run the generator at as many
parameter points, N , as there are coe�cients to be deter-
mined. A square N ⇥N matrix can then be constructed,
mapping the appropriate combinations of parameters on
to the coe�cients to be determined; a normal matrix inver-
sion can then be used to solve the system of simultaneous
equations and thus determine the coe�cients. Since there
is no reason for the matrix to be singular, this method
will always give an “exact” fit of the polynomial to the
generator behaviour. However, this suggestion fails to ac-
knowledge the true complexity of the generator response:
we have engineered the exact fit by restricting the number
of samples on which our interpolation is based, and it is
safe to assume that taking a larger number of samples

�(c̄) ⇠ M2
SM + 2 c̄⇥MSMMNP + c̄2 ⇥M2

NP

1. 2.

Additional plotting code for illustrations

Professor and ProfDriver intro from Holger Schulz: 
https://indico.cern.ch/event/514782/contributions/2318871/attachments/1346417/2030238/Talk.pdf

Produce templates with
fine binning to accommodate to be 

flexible with binning
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Statistical correlations
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Same data used for the 5 input spectra

Estimate statistical correlations using bootstrapping procedure applied to the data:

Fluctuate ATLAS data events according to a Poisson distribution and re-extract the 
Higgs signal

arXiv:1508.02507

https://arxiv.org/abs/1508.02507


HEFT Using 8 TeV data

31

Use five of the published Run-I differential 
spectra: pTH, Njets, mjj, Δφjj, pTj1

• Global fit to all distributions simultaneous
Use Consider 6 coefficients: cγ , cg , cHW+ CP-odd

• Strong constraints on total cγ, cg 

• Weak constraints on cHW, CP-odd/even 

arXiv:1508.02507

https://arxiv.org/abs/1508.02507

