

Measurement and QCD analysis of top quark pair double differential cross sections in CMS

[CMS-PAS-TOP-14-013]

Oleksandr Zenaiev (DESY)

FH Fellow Meeting 29.11.2016

Introduction to heavy-quark (HQ) production

Pedagogical introduction to the physics of HQ hadroproduction: Mangano hep-ph/9711337

- $m_c, m_b, m_t > \Lambda_{QCD}$ provides a hard scale \Rightarrow pQCD benchmark (LO, NLO, aNNLO, NNLO, ...)
- Different HQ masses $(1.3...170 \text{ GeV}) \Rightarrow$ different impact of radiative corections and non-perturbative effects:
 - e.g. for $m_c \approx 1.3~{\rm GeV}$ fragmentation effects are importnant
 - while $m_t \approx 172~{\rm GeV}$ is excellent to test pQCD convergence
- Probe of proton structure, e.g. $gg \rightarrow t\bar{t}$, $gs \rightarrow Wc$ etc.
- \bullet Production sensitive to α_s and HQ masses
- May provide insight into possible new physics

Parton distribution functions (PDFs)

Measure σ , calculate ME \Rightarrow determine PDF and/or FF

Parton distribution functions (PDFs)

Measure σ , calculate ME \Rightarrow determine PDF and/or FF

Charm production at LHCb \rightarrow gluon at low $x \rightarrow$ atmosphere ν fluxes

Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low ${\rm x}$

- LHCb measured:
 - charm $0 < p_T < 8$ GeV, 2 < y < 2.5 [NPB871 (2013) 1]
 - beauty $0 < p_T < 40$ GeV, 2 < y < 2.5 [JHEP 1308 (2013) 117]
- PROSA (Proton Structure Analyses in Hadronic Collisions): QCD analysis of these data
- Reduction of NLO theory uncertainty for y shape
- Improved gluon and sea-quark distributions up to $x\gtrsim 5 imes 10^{-6}$

łơ/dp_⊤ [μb/GeV]

2.0 < p_ < 3.0 GeV

Prompt neutrino fluxes in the atmosphere with PROSA parton distribution functions

- First demonstration how HQ forward hadroproduction data can contsrain low-x gluon
 ⇒ message for global PDF analyses
- Application: predictions for prompt atmosphere ν fluxes

 \Rightarrow background for very high energy cosmic u

PROSA, arXiv:1611.03815

Combination of charm fragmentation fractions

 $f(c
ightarrow H) = \sigma(H) / \sigma(c)$

- Fragmentation functions and fragmentation fractions (FF) cannot be calculated perturbatively \Rightarrow have to be extracted from data
- Checked FF universality (e^+e^- , $e^\pm p$, pp)
- FF sum up to 1

Combined FF have best up-to-date precision

 \Rightarrow input for new charm hadroproduction measurements

Lisovyi et al. EPJ C76 (2016) 397

Why measure $t\bar{t}$ production?

- m_t provides a hard scale \Rightarrow ultimate probe of pQCD (NLO, aNNLO, NNLO, ...)
- Produced mainly via gg
 ⇒ constrain gluon PDF
- \bullet Production sensitive to α_s and m_t
- May provide insight into possible new physics

Why measure 2D?

- Previous 1D measurements: overall good agreement, but revealed some trends
- 2D measurement: study production dynamics in more detail
- Especially better PDF sensistivity

Measurement in $e\mu$ channel:

• Leptons:

- 2 opposite signed $e,~\mu$
- $p_T > 20 \text{ GeV}$
- $|\eta| < 2.4$

Jets:

- at least 2
- $p_T > 30 \text{ GeV}$
- $|\eta| < 2.4$
- at least $1 \ b$ -tagged

Kinematic reconstruction:

- Measured input: leptons, jets, MET
- Unknowns: $\bar{p}_{
 u}$, $\bar{p}_{ar{
 u}}$ (6)
- Constraints:
 - m_t , $m_{\bar{t}}$ (2)
 - m_{W^+} , m_{W^-} (2)
 - $(\bar{p}_{\nu} + \bar{p}_{\bar{\nu}})_T = MET$ (2)

(similar to EPJ C75 (2015) 542)

- t production:
 - y(t)- $p_T(t)$: most simple, aNNLO publicly available

• $t\bar{t}$ production:

- $M(t\bar{t})$ - $y(t\bar{t})$: most sensitive to PDFs (at LO $x_{1,2} = \sqrt{\frac{M(t\bar{t})}{s}} e^{\pm y(t\bar{t})}$)
- $M(t\bar{t})$ - $p_T(t\bar{t})$: sensitive to radiation (at LO $p_T(t\bar{t}) \equiv 0$)
- t, $t\bar{t}$ mixed:
 - $M(t\bar{t})$ - $\Delta\phi(t,\bar{t})$: sensitive to radiation (at LO $\Delta\phi(t\bar{t}) \equiv \pi$)
 - $M(t\bar{t})$ - $\Delta\eta(t,\bar{t})$: correlated with $p_T(t)$ as well as sensitive to radiation
 - $M(t\bar{t})-y(t)$: sensitive to PDFs (at LO $y(t\bar{t}) = (y(t) + y(\bar{t}))/2$)

Comparison to fixed-order predictions

11/17

• Large scale uncertainty at NLO (effectively LO for $p_T(t\bar{t})$ shape)

 $\bullet\,\Rightarrow\,$ useful to test further improvements in pQCD calculations

QCD Analysis

QCD factorisation:

• Using xFitter (former HERAFitter): open-source QCD fit framework

[EPJ C75 (2015) 394, xfitter.org]

- Input data:
 - HERA inclusive DIS data [EPJ C75 (2015) 580]
 - CMS W asymmetry [EPJ C76 (2016) 469]
 - these 2D $t\bar{t}$
- NLO calculations for $t\bar{t}$ [NPB373 (1992) 295] using MCFM \oplus ApplGrid
- Significant improvement of gluon distribution at high x (no other LHC data, e.g. jets)

Best improvement comes from $M(tar{t})$ – $y(tar{t})$: $x_{1,2}=\sqrt{rac{M(tar{t})}{s}}\mathrm{e}^{\pm y(tar{t})}$

- Repeat analysis for 1D distribution $p_T(t)$, y(t), $M(t\bar{t})$, $y(t\bar{t})$
- Check their impact on PDFs

- 2D impact exceeds 1D
- First study of such kind
- Strongly suggests to use these data in global PDF fits

- $\bullet\,$ Measured 2D $t\bar{t}$ normalised cross sections using 8 TeV CMS data
- Quantitative comparison vs MC and fixed-order QCD predictions
- Reasonable overall description, in particular if recent PDFs are used
- PDF fit at NLO using ×Fitter:
 - 2D $t\bar{t}$ data are well described
 - Best constraints come from $M(t\bar{t}) y(t\bar{t})$
 - Impact of 2D is better compared to 1D
 - 2D $t\bar{t}$ data are useful as input for global PDF fits
- Interesting to use NNLO calculations when they become available for 2D

[CMS-PAS-TOP-14-013]

Study of heavy-quark production is an essential ingredient for the understanding of QCD and development of high-energy physics.

BACKUP

BACKUP. Kinematic distributions

Measurement and QCD analysis of 2D $t\bar{t}$ production in CMS

BACKUP. Comparison to MC

Following 1D cross section measurement (TOP-12-028):

- pile-up
- lepton selection
- trigger efficiency
- jet energy scale and resolution ($\lesssim 2\%$)
- b-tagging efficiency
- kinematic reconstruction efficiency
- background variation:
 - DY varied separately by $\pm 30\%$
 - $\bullet\,$ other backgrounds varied simultaneously by $\pm 30\%$
- model uncertainties ($\leq 10\%$):
 - perturbative scale variation
 - matching scale variation
 - *m_t* variation
 - PDFs
 - Hadronization (PowhegHerwig PowhegPythia)
 - Hard scattering (PowhegPythia MadgraphPythia)

BACKUP. χ^2 comparison w.r.t NLO

Distribution	NDoF	MC				NLO nominal (including PDF unc.)						
		MP	PP	PH	мн	HERAPDF2	MMHT14	CT14	NNPDF30	ABM11nf5	JR14	CJ12
$y(t) - p_T(t)$	15	96	58	14	46	46 (40)	26 (24)	24 (21)	28 (25)	62 (51)	47 (47)	24 (23)
$M(t\bar{t}) - y(t)$	15	53	20	13	21	52 (44)	22 (20)	19 (18)	14 (14)	71 (55)	44 (44)	20 (20)
$M(t\bar{t}) - y(t\bar{t})$	15	19	21	15	22	29 (25)	15 (15)	16 (15)	10 (10)	42 (31)	25 (25)	15 (15)
$M(t\bar{t}) - \Delta\eta(t\bar{t})$	11	163	33	20	39	46 (43)	31 (31)	32 (31)	45 (42)	48 (44)	39 (39)	32 (32)
$M(t\bar{t}) - p_T(t\bar{t})$	15	31	83	30	33	485 (429)	377 (310)	379 (264)	251 (212)	553 (426)	428 (415)	382 (378)
$M(t\bar{t}) - \Delta\phi(t\bar{t})$	11	21	21	10	17	354 (336)	293 (272)	296 (259)	148 (143)	386 (335)	329 (324)	297 (295)

Monte Carlo

- MP: MadGraph(CTEQ6) + Pythia6
- PP: Powheg(CT10) + Pythia6
- PH: Powheg(CT10) + Herwig6
- MH: MC@NLO(CTEQ6) + Herwig6

Overall description by MCs:

- best: Powheg + Herwig
- worst: MadGraph + Pythia

NLO

Some comments on PDFs:

- MMHT14, CT14 and NNPDF30: use LHC data
- other PDFs: no LHC data

Overall description by different PDFs:

- best: MMHT14, CT14, NNPDF30, CJ12
- worse: HERAPDF2.0, JR14, ABM11nf5

Particular distributions described by "best" PDFs:

- bad description of $\Delta \phi(t\bar{t})$ and $p_T(t\bar{t})$
- \bullet also bad description of $\Delta\eta(t\bar{t})$
- reasonable description of the rest

BACKUP. Framework of QCD analysis

In short: similar to HERAPDF2.0 fit with $t\bar{t}$ data included (any publicly reproducable PDF fit would serve the purpose)

• Platform: xFitter (former HERAFitter) [www.xfitter.org]

- Input data: HERA $e^\pm p$ inclusive data [1506.06042], $Q^2_{\rm min}>3.5~{\rm GeV}^2$ + CMS W asym. 8TeV [1603.01803] + $t\bar{t}$ normalised 2D data
- RT optimal variable-flavour-number scheme with $n_f = 5$, $\alpha_s^{n_f=5}(M_Z) = 0.118$, $M_c = 1.47$ GeV, $M_b = 4.50$ GeV
- Predictions for tt̄:
 - MNR calculations [NPB373 (1992) 295] via MCFM \otimes ApplGrid \otimes xFitter
 - pole top mass $m_t = 172.5 \text{ GeV}$
 - scales $\dot{\mu}_r^2 = \mu_f^2 = m_t^2 + (p_T^2(t) + p_T^2(\bar{t}))/2$
- PDF parametrisation: 18 free parameters HERAPDF style
- Uncertainties:
 - Experimental: from $\Delta \chi^2 = 1$
 - Model: from theoretical and model parameter variations
 - Parametrisation: from μ_{f0}^2 and parameterisation form variation

BACKUP. NLO vs NNLO

Is it OK to use NLO calculations?

Yes, for normalised distributions $\mathbf{p_T}(t), \mathbf{y}(t), \mathbf{M}(t\overline{t}), \mathbf{y}(t\overline{t})$ with current data precision, because:

- These are the only publicly available calculations
- Missing higher order corrections (estimated by scale variation) for NLO are small w.r.t to data:
 - $\simeq 10\%$ fot total x-section
 - $\lesssim 3\%$ for $p_T(t)$, y(t), $M(t\bar{t})$, $y(t\bar{t})$ shapes
 - Confirmed by exact NNLO calculations [Czakon et al. arXiv:1511.00549] (slightly larger effect on $p_T(t)$).

