Search for non-SM Higgs at the CMS

Chayanit Asawatangtrakuldee DESY CMS

FH Fellow meeting, 29 November 2016

About me

- > Born in Bangkok, Thailand
- > After 18 years old, I started my studying abroad in China
- Finished my PhD from Peking University, Beijing China (2015)
 - based at CERN from 2012 2014
- Started DESY Fellowship in February 2016

Search for non-SM Higgs at CMS

Outline

- > Introduction
- > Higgs \rightarrow Invisible
- > MSSM Higgs $\rightarrow b\overline{b}$
- > Summary

The Standard Model of Particle Physics

Why non-SM Higgs?

- Standard Model (SM) successfully describe particles and interactions but doesn't address the hierarchy problem, fine tuning, dark matter … → need to go beyond the SM (BSM)
 - The discovered Higgs at 125 GeV can play a crucial role in probing BSM physics
- Combined ATLAS and CMS couplings measurements constrains BR(H → BSM) < 34% (40%) at 95% CL from Run-1 data (7 and 8 TeV)</p>
 - Still room for "New Physics"!

- Many BSM theories such as SUSY, Two Higgs Doublet Models, predict such decays, e.g.
 - Higgs \rightarrow invisible particles
 - MSSM Higgs searches
- CMS and ATLAS experiments are actively working on the full Run-2 data to cover large number of BSM Higgs searches

Search for non-SM Higgs at CMS

$\textbf{Higgs} \rightarrow \textbf{Invisible}$

- > Any excess of $BR(H \rightarrow invisible)$ might be
 - a strong sign of physics in the BSM
 - a hint of Dark Matter
- Direct searches must be performed in channels where the Higgs recoils against a visible system

In proton-proton collision at the LHC the following channels are possible

Search for non-SM Higgs at CMS

VBF H \rightarrow **Invisible**

- > Why **Vector Boson Fusion** (VBF)?
 - larger cross-section, better sensitivity

- > Events with two well-separated tag jets and large missing transverse energy
 - absence of particle decay products = simple counting experiment
 - require well modeled missing energy response and resolution
- > Backgrounds with data-driven estimations
 - irreducible $Z(\rightarrow vv)$ +jets
 - W(→lv)+jets where lepton is unidentified
 - QCD multijet process

E_T^{miss} **Reconstruction**

Particle Flow (PF) Algorithm

- optimal combination of information from all sub-detectors
- to improve energy resolution and particles identification
- photon, charged/neutral hadron, µ, e

> Particle Flow Missing Transverse Energy (PF E_T^{miss})

"negative of the vector sum over all transverse momentum of PF-candidates with energy correction and pile-up effect reduction"

JINST 10 P02006 (2015)

Background Estimation

Limits $H \rightarrow Invisible$

- > VBF $H \rightarrow$ invisible results
 - No excess of signal : observed 390 events compatible with 332 ± 36 ± 45 events SM prediction
 - 95% CL observed (expected) limit on B(H→inv) for m_H = 125 GeV is 65% (49%)
- Combination of VBF and ZH productions
 - most sensitive results at the LHC Run-1

EPJC 74 (2014) 2980

Search for non-SM Higgs at CMS

Dark Matter Interpretation

> If Dark Matter couples to the Higgs, the following diagrams are possible

- Limits on B(H→inv) therefore constrain Higgs Portal DM models
- Using effective field theory (EFT) Higgs Portal model which translates into a DMnucleon cross-section*
 - At 90% CL the combined limit on B(H→inv) is 0.51 for a 125 GeV Higgs
 - Consider three DM spin scenarios : scalar, vector, Majorana fermion

*A. Djouadi et al, Phys. Lett. B 709 (2012)

$\mathsf{MSSM}\; \Phi \to \mathsf{b}\overline{\mathsf{b}}$

- MSSM extends beyond the SM Higgs sector by including two complex Higgs doublets which, after symmetry breaking, lead to five physical states
 - 3 neutral Higgs : Φ = A (CP-odd), H, h (CP-even)
 - 2 charged Higgs : H⁺, H⁻
- At tree level, Higgs sector can be determined by only two parameters
 - m_A and $tan\beta = v_u/v_d$
- Search for degenerate H and A in higher mass region
 - large BR($\Phi \rightarrow b\overline{b}$) ~ 90%
- b-associated production: cross-section enhanced by ~2tan²β, better background control
 - require at least 3 b-tagged jets
 - dedicated triggers

$MSSM \Phi \rightarrow b\overline{b} : Run-1$

- Search for a peak in the invariant mass distribution of the two b jets with the highest p_T values
- > Combination of 4.9 fb⁻¹ (7 TeV) and 19.7 fb⁻¹ (8 TeV)
 - Upper limits at 95% CL are set for the MSSM parameter tanβ versus m_A in m_h^{mod+} scenario
 CMS. 19.7 fb⁻¹ (8 TeV) + 4.9 fb⁻¹ (7 TeV)
- > CMS analysis is unique at the LHC
- > 7+8 TeV achieved the best sensitive in this channel to date
 - aim to improve further with 13 TeV data

$MSSM \Phi \rightarrow b\overline{b} : Run-2$

- Search for Φ → bb̄ resonances with double up of center-of-mass energy (13 TeV) and integrated luminosity (37 fb⁻¹)
- > Two dedicated triggers developed in both 2015 and 2016 data (13 TeV)
 - requirement of two jets having strong online b-tagged
- New approach for QCD background using analytical function to model QCD shape from data in signal-like control region and extrapolate the shape to signal region (blinded analysis)
- > Limits will be set on σxBR by fitting invariant mass distribution
- Interpretation in MSSM and more general 2HDMs will be achieved

Stay tuned!

Summary

- > VBF H→invisible analysis provided the most sensitive results at that time of publication
 - the world's first measurement in a challenging and tropical channel
 - the best LHC Run-1 published results when combined with ZH production
- > MSSM $\Phi \rightarrow b\overline{b}$ results for Run-2 are on its way

Backup

Signal Efficiency

$m_{\rm H}~[{\rm GeV}]$	yield POWHEG (VBF)	eff [%] POWHEG (VBF)	yield POWHEG (ggH)	eff [%] POWHEG (ggH)
110	214.0 ± 9.2	0.607 ± 0.026	22.8 ± 8.0	0.0047 ± 0.0017
125	209.5 ± 8.6	0.681 ± 0.028	13.8 ± 5.3	0.0037 ± 0.0014
150	197.1 ± 7.5	0.790 ± 0.030	11.9 ± 4.0	0.0045 ± 0.0015
200	148.5 ± 7.6	0.877 ± 0.045	11.1 ± 3.0	0.0081 ± 0.0021
300	96.2 ± 4.3	1.119 ± 0.050	14.3 ± 2.4	0.0204 ± 0.0034
400	69.3 ± 2.8	1.397 ± 0.056	16.7 ± 2.4	0.0294 ± 0.0041

- > Signal yield and efficiency, assuming 100% BR (H \rightarrow invisible)
- > For m_H = 125 GeV
 - VBF production : 210 ± 9 (stat.) events
 - Gluon fusion production : 14 ± 5 (stat.) events

$H \rightarrow Invisible Run-2$

- > Combination of $H \rightarrow$ invisible using **Run-1** and **2.3 fb⁻¹ of 13 TeV** (2015) data
 - 3 production modes : VBF, VH ($Z \rightarrow II, Z \rightarrow bb, V \rightarrow qq$) and ggH
- > 95% CL Upper limits on σxBR relative to SM production

- Expected sensitivity dominated by Vector Boson Fusion channel
- Better results comparing with indirect constraint from visible decays (34% observed)

```
oxB(H→inv) < 24%
observed
(23% expected)
```