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The Flavour Problem:  masses and mixings

The next puzzle of the SM is the mass spectrum of quarks and leptons. Since the
masses of all fundamental particles in the SM arise from the vacuum expectation value of
a single Higgs field

mquark = yquark · v,

mlepton = ylepton · v,

mW = g/
p

2 · v, (5)

mZ =
q

g2 + g02/
p

2 · v,

mH =
p

� · v,

m� = 0,

mgluon = 0,

the spectrum of masses is the spectrum of the Yukawa couplings and it is absolutely
arbitrary and unclear.Indeed, if one looks at numerical values (see Fig.9, left) [27], one
sees a significant disproportion. The di↵erence in the masses of the first and the third
generation achieves three orders of magnitude. The understanding of the mass spectrum
remains one of the vital problems of the SM.

CKM vs. PMNS 
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Why these values? Are the two related? Are they related to masses? 
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Figure 9: The mass spectrum of quarks and leptons (left) and the CKM and the PMNS
mixing matrices (right). The area of the circles and squares is proportional to the numer-
ical values of parameters

The mixing matrices of quarks ( the Cabibbo-Kobayashi-Maskawa matrix) and leptons
(the Pontecorvo-Maki-Nakagawa-Sakato matrix) are equally unclear. If the CKM matrix
is almost diagonal, the PMNS matrix is almost uniform (see Fig.9, right) [28]. What
explains their big di↵erence? The phases in both matrices which play the key role in the
CP-violation are also unknown. Here possibly lies the answer to the question of the source
of the CP-violation: Quark or lepton sector? The point is that the nonzero phase is usually
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The PMNS and CKM matrices are phenomenologically close to symmetric, and a symmetric form
could be used as zeroth order approximation for both matrices. We study the possible theoretical
origin of this feature in flavor symmetry models. We identify necessary geometric properties of
discrete flavor symmetry groups which can lead to symmetric mixing matrices. Those properties
are actually very common in discrete groups such as A4, S4 or �(96). As an application of our
theorem, we generate a symmetric lepton mixing scheme with ✓12 = ✓23 = 36.21

�
; ✓13 = 12.20

� and
� = 0, realized with the group �(96).

I. INTRODUCTION

The properties of the fermion mixing matrices are ex-
pected to give important hints on the underlying flavor
physics. Flavor symmetries [1] are an attractive and
most often studied approach to explain the rather differ-
ent structure of the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) and Cabibbo-Kobayashi-Maskawa (CKM) mix-
ing matrices. Literally hundreds of models have been
proposed in the literature, applying many possible dis-
crete groups in order to explain lepton and quark mixing.
Instead of adding simply another model to that list, we
study in this paper an interesting possible property of
both the CKM and PMNS matrix. Namely, despite the
fact that the CKM mixing is a small while the PMNS
mixing is large, both can to reasonable precision be es-
timated to be symmetric. The symmetric form of the
CKM matrix has early been noticed and studied in many
references [2–10]. After neutrino oscillation was well es-
tablished the possible symmetric PMNS matrix also at-
tracted some attention [11–16]. The symmetric form dis-
cussed in these references includes the manifestly sym-
metric case (U = UT ) and the hermitian case (U = U †).
It is easy to get the following relation by taking absolute
values

(U = UT
) ) (|U | = |U |T ) ( (U = U†

) (1)

which implies any physical prediction from |U | = |U |T
can also be used in the other two cases U = UT or U =

U †. Both of them are special cases of |U | = |U |T , which
is what we mean with symmetric mixing matrix from now
on.

Using the global fits of the CKM [17] and PMNS [18]
matrices, one finds:

|UCKM| =

0

BBBBBB@

✓
0.97441
0.97413

◆ ✓
0.22597
0.22475

◆ ✓
0.00370
0.00340

◆

✓
0.22583
0.22461

◆ ✓
0.97358
0.97328

◆ ✓
0.0426
0.0402

◆

✓
0.00919
0.00854

◆ ✓
0.0416
0.0393

◆ ✓
0.99919
0.99909

◆

1

CCCCCCA

(2)

|UPMNS|

0

BBBBBB@

✓
0.845
0.791

◆ ✓
0.592
0.512

◆ ✓
0.172
0.133

◆

✓
0.521
0.254

◆ ✓
0.698
0.455

◆ ✓
0.782
0.604

◆

✓
0.521
0.254

◆ ✓
0.698
0.455

◆ ✓
0.782
0.604

◆

1

CCCCCCA
. (3)

Here the upper (lower) values in each entries are upper
(lower) bounds of the matrix elements. The CKM matrix
has been measured to a high precision (here we show the
1� range) and the relations |U12| = |U21|, |U23| = |U32|
are still well compatible with data. The relation |U13| =
|U31| is however not fulfilled by data. As a symmetric
mixing matrix requires that [2, 11]

|U31|2 � |U13|2 = |U12|2 � |U21|2 = |U23|2 � |U32|2 = 0 ,
(4)

we have however an interesting option: namely that some
flavor symmetry or other mechanism generates |U12| =
|U21|, |U23| = |U32| but U13 = U31 = 0. Higher or-
der corrections, which are frequently responsible for the
smallest mixing angles, are then the source of non-zero
|U13| 6= |U31|, as well as for CP violation. Rather triv-
ially, matrices with only one mixing angle are symmetric,
the same holds for the unit matrix.

The symmetry conjecture for the PMNS mixing is less
compatible with data, as shown by the 3� bounds in Eq.
(3) [19]. Similar to the quark sector, the 13- and 31-
elements are incompatible with symmetry (the other two
relations between the elements are also not favored by
data), and a similar situation as mentioned above for the
CKM matrix might be realized. Of course, one could also
imagine that an originally symmetric mixing matrix is
modified by higher order corrections, VEV-misalignment,
RG-effects or other mechanisms that have been studied
in the literature.

For completeness, we give the phenomenological pre-
diction of a symmetric mixing matrix, using the standard
parametrization of the CKM and PMNS mixing matrices
[11]:

|U13| =
sin ✓12 sin ✓23p

1� sin

2 � cos

2 ✓12 cos

2 ✓23 + cos � cos ✓12 cos ✓23
(5)
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smallest mixing angles, are then the source of non-zero
|U13| 6= |U31|, as well as for CP violation. Rather triv-
ially, matrices with only one mixing angle are symmetric,
the same holds for the unit matrix.

The symmetry conjecture for the PMNS mixing is less
compatible with data, as shown by the 3� bounds in Eq.
(3) [19]. Similar to the quark sector, the 13- and 31-
elements are incompatible with symmetry (the other two
relations between the elements are also not favored by
data), and a similar situation as mentioned above for the
CKM matrix might be realized. Of course, one could also
imagine that an originally symmetric mixing matrix is
modified by higher order corrections, VEV-misalignment,
RG-effects or other mechanisms that have been studied
in the literature.

For completeness, we give the phenomenological pre-
diction of a symmetric mixing matrix, using the standard
parametrization of the CKM and PMNS mixing matrices
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neutrino mass states ν1, ν2, and ν3 with (real and positive) masses m1, m2, and m3 [3],

⎛

⎜⎝
νe
νµ
ντ

⎞

⎟⎠ =

⎛

⎜⎝
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

⎞

⎟⎠

⎛

⎜⎝
ν1
ν2
ν3

⎞

⎟⎠ . (1.1)

According to quantum mechanics it is not necessary that the Standard Model states νe, νµ,

ντ be identified in a one-one way with the mass eigenstates ν1, ν2, and ν3, and the matrix

elements of U give the quantum amplitude that a particular Standard Model state contains

an admixture of a particular mass eigenstate. The probability that a particular neutrino

mass state contains a particular SM state may be represented by colours as in Fig. 1. Note

that neutrino oscillations are only sensitive to the differences between the squares of the

neutrino masses ∆m2
ij ≡ m2

i −m2
j , and gives no information about the absolute value of

the neutrino mass squared eigenvalues m2
i . There are basically two patterns of neutrino

mass squared orderings consistent with the atmospheric and solar data as shown in Fig. 1.

m2

0

solar~7×10−5eV2

atmospheric
~2×10−3eV2

atmospheric
~2×10−3eV2

m12
m22

m32

m2

0

m22

m12

m32

νe
νµ
ντ

? ?

solar~7×10−5eV2

Figure 1: The probability that a particular neutrino mass state contains a particular SM state
may be represented by colours as shown in the key. Note that neutrino oscillation experiments
only determine the difference between the squared values of the masses. Also, while m2

2 > m2
1, it is

presently unknown whether m2
3 is heavier or lighter than the other two, corresponding to the left

and right panels of the figure, referred to as normal or inverted mass squared ordering, respectively.
Finally the value of the lightest neutrino mass (sometimes referred to as the neutrino mass scale)
is presently unknown and is represented by a question mark in each case.
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Define the Flavour Problem as an 
absence of explanations for:

• (only) 3 generations of fermions
• mass hierarchies
• fermionic mixing, CP violation, and 

quark vs. lepton discrepancies
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Symmetries as solutions

S. King||
DISCRETE 2014
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Discrete flavour symmetries

• The data (arguably) indicate some ordering to flavoured parameters—new 
flavour symmetries can provide for such organization.

• Discrete symmetries (imposed via finite groups) have been favored candidates, 
especially in the leptonic sector.

• Such discrete symmetries can quantize precise mixing patterns and provide 
interesting relations amongst masses. 

• Furthermore, breaking discrete symmetries does not necessitate goldstone 
modes that could spoil phenomenology, and vacuum alignment can also be 
achieved.

• Discrete symmetries can also be embedded into Grand Unified Theories, and 
could have origins in extra dimensions, e.g. heterotic orbifold 
compactifications, thus naturally connecting them to UV complete theories 

hep-ph/1002.0211
hep-ph/1110.6376
hep-ph/1301.1340
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Status of discrete flavour symmetries?
• Multiple symmetries predict the same mixing patterns, and the same symmetry 

can predict multiple patterns

• In the absence of an exact symmetry, sub-leading corrections become important 
for phenomenology.

• It is not presently clear that any discrete symmetry can, without special 
modeling, successfully describe all fermionic structure.

• Vacuum alignment mechanisms are often involved, and additional symmetries 
often needed.

• It is also not yet clear how such models should be completed/realized in the UV.

Input is needed from UV physics.  Guideposts could come from: 

• Renormalization Group Evolution
• Anomaly cancellation constraints
• Higher dimensional theories
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Projects, ideas, and interests

Generalized anomaly constraints - 
w/ Sven Krippendorf (Oxford)

Can the RGE for mass and mixing parameters be 
generalized with an EFT approach?

Indirect model for quarks and leptons - 
w/ GG Ross (Oxford)

Are there alternative mechanisms/constraints for 
flavoured vacuum alignment?

What are the connections between flavour and 
cosmology?
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Event shape distributions:  thrust

• The fixed order distribution can readily be computed in QCD, though the current state 
of the art is a N3LL’ + O(𝜶s3) resummation performed with EFT techniques:

• The classic example is Thrust:

2. Event shapes 8

Note that while sphericity is dimensionless, and nontrivially so, since
q

i |p̨i|2 depends

non-trivially on the event geometry, thrust looks like an observable that’s artificially

made dimensionless, by dividing out the event independent physical scale Q, set by

the experiment parameters.

Let’s take a quick look at what we’re measuring here: A particle contributes signi-

ficantly to T if the projection of its momentum onto the thrust axis is close to its total

momentum, so we identify high-thrust events as those for which this is true for all particles

in the final state. The thrust axis is the same for all particles, therefore pencil-like events as

shown on the left in figure 2.1 have T ¥ 1, ’messier’ events are assigned lower thrust values.

Sphericity is almost complementary, since for ideally pencil-like events the trans-

verse momentum vanishes completely (i.e. S = 0), whereas an ideally isotropic event

corresponds to S = 1.

T = 1
S = 0

T = 2

3

S = 3

4

T Ø 2

fi

S Æ 3

4

T Ø 1

2

S Æ 1

Figure 2.1: Thrust and sphericity values for various event geometries.

2.3 Fixed order calculations

So far the definition of our two event shapes only allows us to classify final state geometries,

which obviously does not yet promote our understanding.

But as we have a precise definition in terms of momenta, we can easily start perturbative

calculations of expected distributions for event shape observables, given a theory that

allows us to compute S-matrix elements.

Starting with a matrix element, the di�erential cross section is proportional to the

matrix element’s square: d‡ ≥ |M|2 d�n, which can be integrated to an event

DRAFT Printed on 30th September 2016

R.
 R

ah
n

Figure 3.1: Interesting kinematic final state configurations and their corresponding thrust value,
courtesy of Guido Bell.

Section 3.6 and presenting (preliminary) results for di�erential cross-sections in Section

3.7. Concluding thoughts are given in Section 3.8, and Section 3.9 serves as an appendix

collecting some of the required formulae we encounter in the chapter.

3.2 Event Shapes in Soft-Collinear E�ective Theory

Event shapes are geometric, dimensionless observables that characterize hadronic final

states in hard-scattering processes [129]. Unlike, say, a jet algorithm, event shapes are

generally global observables that do not reject any events coming from soft or collinear

radiation. They are normally IR safe and can be studied at hadron or e+e≠ colliders,

though as already noted we focus on the latter because they provide a clean environment

for performing precision extractions of the strong-coupling constant [134–138] and/or

analyzing QCD in the non-perturbative (NP) regime — see e.g. [130,137,139–142].

The most famous event shape is undoubtedly thrust [156]:

· © 1 ≠ T = 1 ≠ 1
Q

max
ˆt

ÿ

iœX

|t̂ · pi| (3.1)

where Q is the collider COM energy, X is the final hadronic state, pi is the three-

momentum of the i’th final state particle, and the thrust axis is defined by the unit

vector t̂ maximizing the sum in the right-hand-side of (3.1). It is easy to see why thrust

characterizes the ‘shape’ of a given event, as it takes particular finite values for interesting

kinematic distributions. For example, in the spherical case T ƒ 1

2

whereas in the dijet

case T ƒ 1, a situation illustrated in Figure 3.1. Thrust can readily be computed in

QCD. Up to O(–s), its di�erential cross-section ‡Õ is given in the dijet limit by:

‡Õ(·) © 1
‡

0

d‡

d·
=

thrust

”(·) + –sCF

4fi

C

(≠2 + 2fi2

3 ) ”(·) ≠ 6
51
·

6

+

≠ 8
C

ln ·

·

D

+

D

+ O(–2

s) (3.2)
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FIG. 9: Theory scan for errors in pure QCD with massless quarks. The panels are a) fixed-order, b) resummation with no
nonperturbative function, c) resummation with a nonperturbative function using the MS scheme for Ω̄1 without renormalon
subtraction, d) resummation with a nonperturbative function using the R-gap scheme for Ω1 with renormalon subtraction.

caption of Tab. II. Furthermore, we always consider five
active flavors in the running and do not implement bot-
tom threshold corrections, since our lowest scale in the
profile functions (the soft scale µS) is never smaller than
6 GeV in the tail where we perform our fit.

In Fig. 9 we display the normalized thrust distribution
in the tail thrust range 0.15 < τ < 0.30 at the differ-
ent orders taking αs(mZ) = 0.114 and Ω1(R∆, µ∆) =
0.35 GeV as reference values, and neglectingmb and QED
corrections. We display the case Q = mZ where the
experimental measurements from LEP-I have the small-
est statistical uncertainties. The qualitative behavior of
the results agrees with other c.m. energies. The colored
bands represent the theoretical errors of the predictions
at the respective orders, which have been determined by
the scan method described in Sec. VI.

In Fig. 9a we show the O(αs) (light/yellow), O(α2
s)

(medium/purple) and O(α3
s) (dark/red) fixed-order

thrust distributions without summation of large loga-
rithms. The common renormalization scale is chosen
to be the hard scale µH . In the fixed-order results the
higher order corrections are quite large and our error es-
timation obviously underestimates the theoretical uncer-
tainty of the fixed-order predictions. This panel including
the error bands is very similar to the analogous figures
in Refs. [4] and [6]. This emphasizes the importance of
summing large logarithms.

In Fig. 9b the fully resummed thrust distributions at
NLL′ (yellow), NNLL (green), NNLL′ (purple), N3LL
(blue) and N3LL′ (red) order are shown, but without
implementing the soft nonperturbative function Smod

τ or
the renormalon subtractions related to the R-gap scheme.
The yellow NLL′ error band is mostly covered by the
green NNLL order band, and similarly the purple NNLL′
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In Fig. 9a we show the O(αs) (light/yellow), O(α2
s)

(medium/purple) and O(α3
s) (dark/red) fixed-order

thrust distributions without summation of large loga-
rithms. The common renormalization scale is chosen
to be the hard scale µH . In the fixed-order results the
higher order corrections are quite large and our error es-
timation obviously underestimates the theoretical uncer-
tainty of the fixed-order predictions. This panel including
the error bands is very similar to the analogous figures
in Refs. [4] and [6]. This emphasizes the importance of
summing large logarithms.

In Fig. 9b the fully resummed thrust distributions at
NLL′ (yellow), NNLL (green), NNLL′ (purple), N3LL
(blue) and N3LL′ (red) order are shown, but without
implementing the soft nonperturbative function Smod

τ or
the renormalon subtractions related to the R-gap scheme.
The yellow NLL′ error band is mostly covered by the
green NNLL order band, and similarly the purple NNLL′
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Jet evolution with soft and collinear radiation
• Event shapes can be predicted with SCET, an effective theory describing collinear and soft 

degrees of freedom (light, energetic particles) occurring alongside main channel collider 
scale Q

9

• SCET permits the precision resummation of large logs of these scales via renormalization 
group evolution!

Soft-Collinear Effective Theory [Bauer, Fleming, Pirjol, Stewart 00;
Beneke, Chapovsky, Diehl, Feldmann 02]
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Two versions of SCET

SCETI: E2
s ⌧ m2

J ⌧ E2
J

I

EJ ⇠ Q

mJ

Es ⇠ m2

J
Q

d� ' H(Q, µ) · J(mJ , µ) · S(m2
J/Q, µ)

ln2 Q2

m2
J
= 1

2 ln2 Q2

µ2 � ln2 m2
J

µ2 + 1
2 ln2 m4

J/Q2

µ2

) resum Sudakov logarithms with RG techniques

SCETII: E2
s ⇠ m2

J ⌧ E2
J

I

d� ' H(Q, µ) · J(mJ , µ) · S(mJ , µ)

ln2 Q2

m2
J
= ln2 Q2

µ2 � ln2 m2
J

µ2 + ?

) new type of logarithms that cannot be resummed with RG techniques

J E T B R O A D E N I N G I N E F F E C T I V E F I E L D T H E O R Y G U I D O B E L L
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Strong coupling extractions

What can break the 𝛼s  conundrum?  

• Many groups have utilized high-precision 
event-shape results to extract a value for 𝛼s.  
Recently, N3LL resummations for multiple 
observables have been achieved.  

𝛼s • However, the value of 𝛼s is highly 
correlated to non-perturbative physics.

A. Hoang, 2015 workshop 
on precision 𝛼s extractions

2016 world average: 
.1181 +- .0013 

Workshop on High Precision Alpha_s Measurements, Oct 12 - 13, 2015 

Size of Non-Perturbartive Effects 

Monte-Carlo estimate vs. fits of non-perturbative powercorrection: 

• Simultaneous fit of power corrections and 
the strong coupling. 

• Sizeable power correction and strong 
coupling smaller than world average. 

• Power corrections taken from difference 
MCparton level - MChadron level 

•   Small power correction and strong 
generically larger than world average. 

• Problem: MCparton level  is only LO/LL 
description:                                     
MCparton level - MChadron level is LO/LL ! 

• Should not be used in event shape 
averages. 



Angularities:  spectrum and convergence
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Angularities circa 2009

4

To date, Angularities have been resummed and matched to NLL’+ O(�s) 
accuracy:  Hornig/Lee/Ovanesyan
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Figure 8: Angularity distributions at Q = 100 GeV. The full, NLL/NLO resummed, renormalon-
subtracted distributions in Fig. 7 are here shown all on the same scale. The parameters are chosen
the same as in Fig. 7. From highest to lowest peak value, the curves are for a = �2, �1, � 1
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Figure 9: Hard scale variation (dark green band) and correlated jet and soft scale variation
(light blue band) of the NLL/NLO resummed, renormalon-subtracted angularity distributions at
Q = 100 GeV for a = �1, a = 0, a = 1/4, and a = 1/2. For the hard scale variation, µH varied
between Q/2 and 2Q and for the correlated scale variation, µJ and µS are varied between half the
values given in Eq. (6.1) and twice these values.
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Figure 3.6: LEFT : The central values of the NNLLÕ resummed and O(–2

s) matched angularity
distributions at all 7 values of the parameter a. RIGHT : Theory bands demonstrating the
convergence between NLL æ NNLLÕ resummations. The plot is for a = .25. Q = 91.2 GeV in
both plots.

We have designed a profile function [137,166] that fulfills all of the criteria listed above

while smoothly interpolating between the various regions. These scales are ·a-dependent

and also depend on multiple additional parameters that can be tuned to appropriate

specifications. While we do not show the explicit functional form of our profile scales, they

are similar to those in [137, 213, 214] and meet all of the above criteria for interpolating

between the relevant ·a regions. A plot of our scale choices for Q = 100 GeV is seen in

Figure 3.5, where one observes the leveling o� in the low ·a region, the natural behavior

in the mid ·a region, and finally the convergence of all three scales in the far-tail region.

The error bands represent independent variations of the jet and soft scale dependence.

Varying the hard scale shifts the overall scale of the plot up or down. Indeed, the final

theory errors presented in Section 3.7 reflect all of these independent variations added in

quadrature.

3.7 Results

We now collect all of the results from Sections 3.5 and 3.6 and present our preliminary

curves for the di�erential cross-sections of resummed and matched angularity distribu-

tions. All of our results are for Q = 91.2 GeV, and we have set –s(MZ) = .1161.

In the left plot of Figure 3.6 we show the central theory curves in the tail and near-

far-tail regions for all values of a calculated in this study. No NP shift has been applied,

although they have been matched to QCD to O(–2

s) as described in Section 3.6.5. One
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• The results are matched to O(𝜶s2).  

• Q = 91.2 [GeV]
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distributions at all 7 values of the parameter a. RIGHT : Theory bands demonstrating the
convergence between NLL æ NNLLÕ resummations. The plot is for a = .25. Q = 91.2 GeV in
both plots.

We have designed a profile function [137,166] that fulfills all of the criteria listed above

while smoothly interpolating between the various regions. These scales are ·a-dependent

and also depend on multiple additional parameters that can be tuned to appropriate

specifications. While we do not show the explicit functional form of our profile scales, they

are similar to those in [137, 213, 214] and meet all of the above criteria for interpolating

between the relevant ·a regions. A plot of our scale choices for Q = 100 GeV is seen in

Figure 3.5, where one observes the leveling o� in the low ·a region, the natural behavior

in the mid ·a region, and finally the convergence of all three scales in the far-tail region.

The error bands represent independent variations of the jet and soft scale dependence.

Varying the hard scale shifts the overall scale of the plot up or down. Indeed, the final

theory errors presented in Section 3.7 reflect all of these independent variations added in

quadrature.

3.7 Results

We now collect all of the results from Sections 3.5 and 3.6 and present our preliminary

curves for the di�erential cross-sections of resummed and matched angularity distribu-

tions. All of our results are for Q = 91.2 GeV, and we have set –s(MZ) = .1161.

In the left plot of Figure 3.6 we show the central theory curves in the tail and near-

far-tail regions for all values of a calculated in this study. No NP shift has been applied,

although they have been matched to QCD to O(–2

s) as described in Section 3.6.5. One
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• No NP shift applied.  

• a = .25

• Nice convergence between      
NLL   -> NNLL’.

• Former state-of-the-art was at 
NLL’.
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Courtesy: Anne Schukraft

Atmospheric charm production
arXiv:1506.08025 + 1511.06346
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Prompt neutrinos @ terrestrial detectors

• Our central result is just below the 
most recent IceCube bound, 
indicating that a prompt component 
of the incoming flux should be 
observed soon….

• Our central result is consistent 
with the recent BERSS 
collaboration, though with better 
estimates of the uncertainties, 
which also encompass the 2008 
ERS result and the most recent 
GMS calculation.
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Figure 9. Comparison of our calculation (GRRST) with the central values from ERS [16], BERSS
[20] and GMS [24], all calculated using the BPL cosmic ray spectrum.

atically smaller than GMS, while the benchmark ERS result is at the upper end of the

theory uncertainty band. Note that the BERSS calculation is based on the CT10 NLO

PDF set [66] while the GMS calculation uses the ABM11 PDF set [62], neither of which

incorporate the recent LHCb charm hadroproduction data. The ERS calculation was not

based on pQCD at all, but the empirical ‘colour dipole model’. It is evident that there

is now some stability in calculations of the prompt neutrino flux and that in particular a

theoretical lower limit can be set (subject of course to the large systematic uncertainty in

the parameterisation of the incoming cosmic ray flux).

3.3 Spectral index of the prompt neutrino flux

It is useful to extract the local spectral index of the prompt neutrino flux, defined as:

�(E⌫) ⌘ �d ln�⌫(E⌫)

d lnE⌫
, where �⌫(E⌫) = A(E⌫)E

��(E⌫)
⌫ , (3.1)

in order to compare with the standard expectation that � ' 2.7. Both are shown in

figure 10 which illustrates that above 105 GeV the näıve scaling is not obeyed. The BPL,

H3P and H3A cosmic ray fluxes all yield a a prompt neutrino spectrum which falls o↵

more steeply, while with the H14a and H14b fluxes a harder spectrum is obtained (it is

worth keeping in mind that at very high energies, above ⇠ 50 PeV, charmed mesons too

will begin to lose energy by interaction with air nuclei before decaying, and at this point

the fall-o↵ of the prompt neutrino flux with E⌫ will start to become similar to that of the

conventional flux.).

This indicates that a extraction of the prompt flux from a fit to data (including both

the conventional flux and a cosmic signal) requires the full calculation of �⌫(E⌫) as a prior,

with the overall normalisation left free but bounded by the total uncertainty band shown

in figure 5. At a minimum, the lower limit on the prompt neutrino flux should be used as

a prior, rather than allowing it to be zero as in current analyses [26].
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Figure 5. The prompt neutrino flux using the BPL cosmic ray spectrum as input. The error band
includes all relevant sources of theoretical uncertainties: from PDFs (68% CL), missing higher
orders and the charm mass, as discussed in the text. The ERS benchmark calculation [16] is shown
for comparison, as is the recent 90% CL upper limit on the prompt flux from IceCube [26].
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Figure 6. The prompt neutrino flux and its uncertainty using the H3A cosmic ray spectrum as
input, compared to the conventional neutrino flux at IceCube [61].

that this limit should be interpreted with some care, since it depends e.g. on the specific

parameterisation of the cosmic ray flux in the analysis.

In figure 6 we compare the prompt neutrino flux with the conventional neutrino flux

from the decays of pions and kaons, using the same cosmic ray spectrum (H3A). We
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Finalizing automated calculation of NNLO soft functions
w/ Guido Bell (Siegen) and Rudi Rahn (Bern)

What’s the value of the strong coupling constant at 
M_{Z}?

NNLL resummation of angularities
w/ Chris Lee (LANL), Andrew Hornig, and Guido Bell

Are there any other systematic uncertainties in the 
prompt atmospheric neutrino flux?

What can SCET say about the (forward) production of 
heavy mesons?

Projects, ideas, and interests


