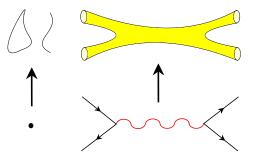
Paul-Konstantin Oehlmann Theory Research Group: Wilfried Buchmüller & Jan Louis

Personal Life

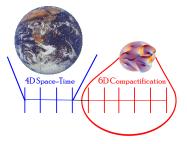

- Born: 1985 in Leipzig
- School: Dortmund/Neuss
- non-physics interests: Martial Arts, Running, Whisky

Academic Carrier

- Bachelor, Master, PhD: Bonn University with Hans Peter Nilles
- Visiting Researcher: KIAS (Seoul) Virginia Tech
- 1. Postdoc: DESY, until '17
- 2. Postdoc: Virginia Tech until '19

String Theories

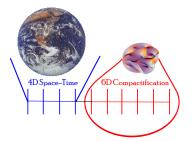
• String Theory Idea: extend point like particles by one dimension more!



A bunch of consequences

Assuming (Quantized) Strings as fundamental objects is highly constraining:

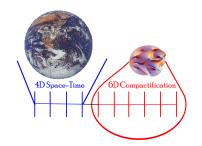
- Must have a Graviton in its massless spectrum
- Space-time must be 9(space)+1(time) dimensional
 - \rightarrow Make extra dimension compact and small


Compactification

Compactification has a highly non-trivial impact on 4D Physics

イロト イロト イヨト イ

Compactification



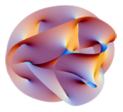
<ロ> <同> <同> <同> < 同> <

Dictionary of Physics and Geometry

• Like harmonics of a Cello, string state probe shape of internal geometry

Compactification

イロト イヨト イヨト イヨ

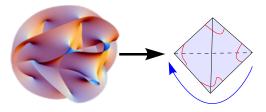

Dictionary of Physics and Geometry

- Like harmonics of a Cello, string state probe shape of internal geometry
- Mathematical properties of the compact internal space
 - \leftrightarrow Physical properties of the four non-compact Dimensions

Given, that we have a theory, that includes quantized gravity, we should explore its structures and see if we can connect it to our world

- String Compactifications
 - F-theory
 - Gauge Symmetries: Abelian Symmetries, Discrete Symmetries . . .
 - Global Compactifications: Moduli, Fluxes
 - Heterotic String and Gauged Linear Sigma Models
 - Discrete (gauged)-Symmetries, R-Symmetries
 - Landau-Ginzburg Phase, Mirror Symmetry
- String Phenomenology
 - Grand Unified Models from Heterotic String on Orbifolds
 - Standard Model and GUTs in F-theory flux compactifications

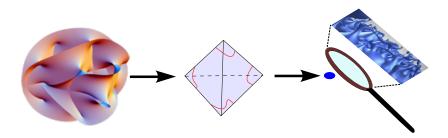
Symmetries \leftrightarrow Geometry in Heterotic String



Geometric Transitions and Higgs Effect

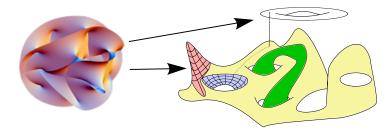
Start with Smooth Space compute the harmonic string states

・ロト ・回ト ・ヨト ・


Symmetries \leftrightarrow Geometry in Heterotic String

Geometric Transitions and Higgs Effect

- Start with Smooth Space compute the harmonic string states
- Geometric operation: Push curvature to singular points (Orbifold)
 - Physics Response: more string states, more symmetries
 - \rightarrow un-higgsing (such as Electro-Weak Unification)
 - \rightarrow **Discrete rotations**: Flavor- and R-symmetries usefull Pheno applications

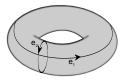

Symmetries \leftrightarrow Geometry in Heterotic String

Geometric Transitions and Higgs Effect

- Start with Smooth Space compute the harmonic string states
- Geometric operation: Push curvature to singular points (Orbifold)
 - Physics Response: more string states, more symmetries
 → un-higgsing (such as Electro-Weak Unification)
- Geometric operation: Push full space to singular point
 - Physics Response another un-higgsing but (classical) geometry screwed up

F-theory Compactifications

F-theory Idea


Take the geometrization of physics even more serious

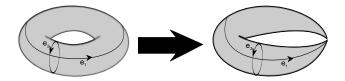
• Make the string **coupling constant** g a geometric property:

$$\mathsf{g}^{-1} = \mathsf{Im}(au)$$
 with $au = rac{\mathsf{e}_2}{\mathsf{e}_1}$

• τ being the complex *shape* modulus of the torus

F-theory Compactifications

F-theory Idea


Take the geometrization of physics even more serious

• Make the string **coupling constant** g a geometric property:

$$\mathsf{g}^{-1} = \mathsf{Im}(au)$$
 with $au = rac{\mathsf{e}_2}{\mathsf{e}_1}$

• τ being the complex *shape* modulus of the torus

F-theory Compactifications

F-theory Idea

Take the geometrization of physics even more serious

• Make the string **coupling constant** g a geometric property:

$$g^{-1} = {\sf Im}(au)$$
 with $au = rac{e_2}{e_1}$

- τ being the complex *shape* modulus of the torus
- $au
 ightarrow i\infty$ singular torus, strong coupling, enhanced gauge symmetries

String Theory and String Geometries

Compelling framework to geometrize physics and gravity in a UV complete way

- Mathematics: Learn to understand the dictionary
- **Physics:** To which degree can we **construct models of particle physics** from string theory? How to we obtain the standard model?

String Theory beyond Geometry

String theory provides a rich environment to study

- Dualities: Same Physics encoded in completely different geometries
- Spaces that completely **screw** up our notion of **geometry**

< □ > < 同 > < 回 > < Ξ > < Ξ

Thank You Very Much!

・ロト ・ 日 ・ ・ 日 ト