

ATLAS silicon strip tracker upgrade: Anatomy of a petal

Dario Ariza, Soeren Ahrens, Yu-Heng Chen, **Claire David**, Sergio Diez Cornell, Nils Flaschel, Carina Jacobi, Yi Liu, and the help of many others.

Tuesday, November 29, 2016

DESY FH Fellow Meeting

Little bio

Little bio

2005-2010

Master's Engineering at INSA Toulouse, France National Institute of Applied Sciences Institut National des Sciences Appliquées

Little bio

2005-2010

Master's Engineering at INSA Toulouse, France National Institute of Applied Sciences Institut National des Sciences Appliquées

2009

Erasmus semester at Humboldt Universität, Berlin Working at DESY Zeuthen on IceCube's electronics

Little bio

2005-2010

Master's Engineering at INSA Toulouse, France National Institute of Applied Sciences Institut National des Sciences Appliquées

2009

Erasmus semester at <u>Humboldt Universität</u>, <u>Berlin</u> Working at <u>DESY Zeuthen</u> on IceCube's electronics

2010-2016

PhD at University of Victoria, Canada

Search for supersymmetry using a Higgs boson in the decay cascade with the ATLAS detector at the LHC

Little bio

2005-2010

Master's Engineering at INSA Toulouse, France National Institute of Applied Sciences Institut National des Sciences Appliquées

2009

Erasmus semester at Humboldt Universität, Berlin Working at DESY Zeuthen on IceCube's electronics

2010-2016

PhD at University of Victoria, Canada

Search for supersymmetry using a Higgs boson in the decay cascade with the ATLAS detector at the LHC

August 2016

Start DESY Fellowship, working on ATLAS Upgrade

Little bio

2005-2010

Master's Engineering at INSA Toulouse, France National Institute of Applied Sciences Institut National des Sciences Appliquées

2009

Erasmus semester at Humboldt Universität, Berlin Working at DESY Zeuthen on IceCube's electronics

2010-2016

PhD at University of Victoria, Canada

Search for supersymmetry using a Higgs boson in the decay cascade with the ATLAS detector at the LHC

August 2016

Start DESY Fellowship, working on ATLAS Upgrade

Content of this talk

- 1. ATLAS upgrade: why and what?
- 2. Presentation of the petal
- 3. Infrared anatomy
- 4. Optical metrology
- 5. Summary and videos!

Goals of HL-LHC program: increase discovery potential and precision on measurements

 \Rightarrow increase of instantaneous luminosity and number of collisions / bunch crossing

1017 016 10¹⁵

10¹⁴

2

z [cm]

Goals of HL-LHC program: increase discovery potential and precision on measurements \Rightarrow increase of instantaneous luminosity and number of collisions / bunch crossing

Goals of HL-LHC program: increase discovery potential and precision on measurements ⇒ increase of instantaneous luminosity and number of collisions / bunch crossing

Need new trackers for Run 4 onwards in 2026 with requirements:

Goals of HL-LHC program: increase discovery potential and precision on measurements ⇒ increase of instantaneous luminosity and number of collisions / bunch crossing

Need new trackers for Run 4 onwards in 2026 with requirements:

High performance	low p_T : reduce tracking volume material high p_T : reduce average pitch
High radiation hardness	radiation hard sensor material new readout electronics
High granularity	to resolve ~ 200 collisions/bunch crossing maintain detector occupancy below % level

Introducing the thermo-mechanical petal

Thermo-mechanical petal prototype: the real thing

Goals of petal characterization

Mechanical tests

- resistance to deformations
- reaction to shearing
- vibration tests

Goals of petal characterization

Mechanical tests

- resistance to deformations
- reaction to shearing
- vibration tests

Optical tests

- flatness measurements
- glue thickness measurements

Goals of petal characterization

Mechanical tests

- resistance to deformations
- reaction to shearing
- vibration tests

Optical tests

- flatness measurements
- glue thickness measurements
- Infrared thermography
 - temperature distribution on petal's surface
 - see temperature ranges in normal/abnormal conditions
 - estimate temperature when thermal runaway can occur

Basics of thermal imaging

There is no direct method to measure the temperature

Basics of thermal imaging

There is no direct method to measure the temperature

Source: Instrument FLIR Webinar

Infrared camera can't differentiate the different sources!

Emissivity

 $\epsilon = \frac{\text{Actual emission from a surface at temperature T}}{\text{T}}$

Emission from a black body at temperature T

describes how well the target emits infrared radiation

Custom thermal chamber at DESY

Front view

Top view

- Camera angled to avoid Narcissus effect
- Thermo-mechanical prototype maintained vertical
- IR Camera: Infrated VarioCam® HD Inspect 600 (640 \times 480 pixels)
- Arduino-controlled lead screw gantry system (IGUS SAW-1040, NEMA 23) to move camera in XY direction

Instrumentation of chamber

Screenshot from IRBIS® software, full petal at ambiant (warmer)

Difficulty: emissivity of silicon not known + need a non-destructive method **The black tape trick:** emissivity constant (0.9) and at therm. eq. $\rightarrow T_{tape} = T_{Si}$ **Steps:**

- 1. take thermogram at $\epsilon = 0.9$
- 2. get emissivity next to black tape ightarrow compute average emissivities $ar{\epsilon}$
- 3. take thermogram with $\bar{\epsilon} \Rightarrow$ temperature values corrected

Corrected thermogram, full petal, cooled, power on

Claire David - ATLAS silicon strip tracker upgrade: Anatomy of a petal - DESY FH Fellow Meeting

Close-up on modules R5 and R4, cooled, no power

Claire David - ATLAS silicon strip tracker upgrade: Anatomy of a petal - DESY FH Fellow Meeting

Inter(g)lude

Metrology of module on-core gluing

Manual assembly, SE4445 DC adhesive 140 μm fishing lines to control glue height Glue thickness measured around Si sensors with CNC670 SmartScope optical table

Average glue thickness of around 162 μ m, narrow distribution (1 σ = 34 μ m)

Also studied with SmartScope: Sensor bow estimated with 180 - 300 points. Calculated flatness around 150 - 200 μm .

Claire David - ATLAS silicon strip tracker upgrade: Anatomy of a petal - DESY FH Fellow Meeting 12

Back to IR results

Thermal cycle

- Powered petal (10.5 V; 2.3 A) undergoing "thermal cycle"
- Start: chiller at 20°C, go to -20°C, back to 20°C with step $\Delta T = 4$ °C
- Thermal equilibrium reached at each step (as much as possible)
- Recorded temperatures: inlet + outlet cooling pipes + 4 black tape on petal

- reduction of silicon surface temperature up to $\Delta T =$ 16 °C
- Upper curve \equiv cooling down
- System does not exhibits thermal memory for considered temperature range [-6°C; 22°C].

A petal prototype for the future ATLAS ITk strip detector is beeing characterized at DESY:

Metrology

Optical inspection with SmartScope on glue thickness and sensor bow \Rightarrow Results are very satisfying given the fact the petal was manually assembled!

Thermograms

First tests of thermo-mechanical petal in DESY custom thermal chamber Non-destructive method to correct thermogram to the emissivity of silicon First (pre)-thermal cycle showing no history from range -6 ; 22° C for Si sensors

What's next?

- Automation of optical measurements using SmartScope software
- Improving the infrared tests with
 - new camera
 - new chiller (CO₂ evaporative cooling)
 - new calibration ideas (using dummy modules with glued thermocouples)

Dr. Frank-Einstein Petal

Claire don't forget the videos

Backups

Custom thermal chamber at DESY

Back side of chamber

- Two petal sides powered with 10.5 V & ${\sim}2.35$ A $\Rightarrow {\sim}24$ W dissipated / side
- Pt100 4-wire sensors to measure inlet and outlet temperatures
 → glued to titanium cooling pire with WEICON Contact Cyanoacrylate

Claire David - ATLAS silicon strip tracker upgrade: Anatomy of a petal - DESY FH Fellow Meeting 16

Method to correct for the emissivity

Difficulty

- Emissivity of silicon unknown
- Petal not to be touched

Trick of black tape:

- known and stable emissivity
- $T_{tape} = T_{Si}$ at therm. equil.

Pieces of black tape were put on petal.

Correction

- 1. Set $\epsilon=$ 0.9 and take thermogram
- 2. Measure T_i on black tape markers i
- 3. Get ϵ_i of Si point near each marker i
- 4. Get average emissivity $\bar{\epsilon}$
- 5. Take globally corrected thermogram with $\overline{\epsilon}$

Close-up on module R2 and R1, cooled, power off

Close-up on module R2 and R1, cooled, power on

Claire David - ATLAS silicon strip tracker upgrade: Anatomy of a petal - DESY FH Fellow Meeting

Close-up on module R3, cooled, power off

Module R3 (left) cooled at -20° C (chiller), -5.9° C (inlet pipe), no power, $\epsilon = 0.65$

Claire David - ATLAS silicon strip tracker upgrade: Anatomy of a petal - DESY FH Fellow Meeting

Close-up on module R3, cooled, power off

Module R3 (left) cooled at -20° C (chiller), -5.9° C (inlet pipe), no power, $\epsilon = 0.63$

Claire David - ATLAS silicon strip tracker upgrade: Anatomy of a petal - DESY FH Fellow Meeting

Close-up on module R3, cooled, power off

Claire David - ATLAS silicon strip tracker upgrade: Anatomy of a petal - DESY FH Fellow Meeting

Alternative method to correct for the emissivity

"Filter tool" from IR camera software IRBIS $^{\ensuremath{\mathbb{R}}}$ to correct thermogram

- needs a reference image + ambiant & object temperatures
- supposes a strict uniform distribution of object temperature
- output emissivity map coherent with assumptions (black tape \sim 1)

Uncorrected thermogram

Corrected using filter method

Metrology of module on-core gluing

Details in presentation at Strip Module Meeting 17 Nov 2016