
Some little studies



Idea
● On the basis, that probably the hot stuff happens where the CPU time is 

spend, I had a look into the timing.



Setup





And bad finding 
efficiency, 
despite the 
same events are 
used for 
training!

Segment 
Network 
Producer is 
slow, even when 
there are few 
friend 
relationships 
between sectors 
(as we have 
used only 10 
events for the 
training), O(30) 
TrackCands



Note: There are 10,000 events 
in the file.



4th event “breaks” my Computer;

Segment Network Producer 
gets only factor 2 slower, if 
there is a ton of friend 
relations…

New modules 
SVDOverlapChecker and 
TrackSetEvaluatorGreedyDEV 
scale well with large number 
of TrackCandidates 
(O(10,000));

Let’s see for Hopfield, but I’m 
optimistic.



First set comes from Jakob’s Greedy, 
second is the result of my Greedy of 3rd 
event.
They are the same (they differ with the 
fitter as QI estimator, as they act 
differently, if there are several 
candidates with the same QI value).



Conclusion of Study of differently trained secMaps
● Preliminary, possibly wrong: [Multi-Pass doesn’t solve our problems, as even with sparse secMap, 

the SegmentNetworkProducer takes fairly long for a difficult event.]
● Timing strongly dependent on implementation of stuff → Stefano will not get a good intuition on the 

real timing with using the new trackFinding setup.



Look into SegmentNetworkProducerModule
● Found a swamp of code, that in some parts looks very optimized, but has as 

well tons of pitfalls regarding:
○ Branch misprediction (“If-statements”),

○ Lack of cache locality (Pointers or vectors of pointers, where vectors of the object itself could 
be),

○ debugging and supervising information, that isn’t strictly needed, and

○ “Keep it save” checks on validity of data, where having non-valid data simply shouldn’t occur 
(in this respect, the CDC code is as well not a good example).



Study the Timing of the event loop of SegmentNet...







OK, Problem is Observer setup
● Jakob told, me the problem are the Observers…

○ Next step: using VoidObservers and test the timing again. 







With “little” 
SecMap. 
Nothing 
relevant...



Now using the fat SecMap again
OK, now we are back, that the 
OverlapChecker is the 
“problem”. Or not, as this 
amount of TrackCandidates is 
rare, so we know, the redesign 
is fast enogh!



I guess it is this piece of code...



Alternative Conclusion
● Pausing work for that long on a badly documented complicated piece of code, is not a great idea.
● Speed is probably a non-issue of the VXD Track finder.

○ → Focus on efficiency.

○ Look into realistic situation, if then SVDOverlapChecker is still the problem, we can further 
think about not sorting...



BackUp





With circle Fitter instead of Random
We should spend more 
time on the quality 
estimation!


