Neues von den LHC Experimenten

Volker Büscher, Universität Mainz KET Jahresversammlung, 19.11.16

CMS

ALICE

Danke: L. Feld, I. Gregor, M. Kobel, T. Müller, H.-C. Schultz-Coulon, A. Stahl, U. Uwer

Verstärkung der "cross-FSP" Strukturen

Experimentbegleitende Theorie

Neu: Controlling Office für FIS-Projekt

Gefördert durch Neu: Erkenntnisvermittlung, Nachwuchsgewinnung

BMBF!

Neu: LHC Experimente machen Daten (und Simulationen) öffentlich

41 Highlight: LHC Open Data Portal

Neu: LHC Experimente machen Daten (und Simulationen) öffentlich

Level 1: Get Started

Physicists at the <u>ATLAS</u> Experiment visualise collision data with histograms. They are used in every publication, from simple analyses to headline-making discoveries. *In this section*, you will learn how the data is visualised.

Explore:

- Documentation: a step-by-step guide to using Histogram Analyser and ROOTbrowser
- Histogram Analyser: a web based tool for fast, cut-based analysis of data. Visualise data using online histograms
- ROOTbrowser: a web based tool for displaying histograms individually. More freedom to plot different variables
- Live events: see live events from the ATLAS experiment

Explore

Deutsche Beteiligung an Leitungspositionen (nur Level 1)

Top-Level Management

ATLAS Sprecher (ab 03/17): Karl Jakobs

ATLAS Stellv. Sprecherin: Beate Heinemann

Physikgruppen

ATLAS Standardmodell: Ulla Blumenschein

ATLAS Standardmodell: Matthias Schott

ATLAS Exotics: Klaus Mönig

Detektor/Upgrade

CMS Muon IB Chair: H. Reithel

CMS Tracker IB Chair: L. Feld

CMS BRIL IB Chair: W. Lohmann

LHCb Project Leader HLT: M. Vesterinen

LHCb Project Leader SciFi Tracker: U. Uwer

LHCb Upgrade Perf. Coordinator: J. Albrecht

Rekonstruktion/Computing

LHCb Flavour Tagging: J. Wishahi

LHCb Tracking: M. De Cian

CMS Statistics Comm. Chair: O. Behnke

CMS Computing RB Chair: M. Kasemann

Committees

CMS Engagement Office: K. Borras CMS Conference Committee Chair: A. Meyer CMS Authorship Board Chair: M. Kasemann LHCb Editorial Board Chair: M. Schmelling LHCb CB Chair: B. Spaan

61 LHC Run II

71 LHC Run II

***| LHC Run II**

JE LHC Veröffentlichungen

Der LHC ist eine Erkenntnisfabrik

- Produktionsraten bestimmt durch
 Partonluminositäten
- dramatischer Einbruch bei hohen
 Massen

- Produktionsraten bestimmt durch
 Partonluminositäten
- dramatischer Einbruch bei hohen
 Massen

- Produktionsraten bestimmt durch
 Partonluminositäten
- dramatischer Einbruch bei hohen
 Massen
- **→** 2016:

Sensitivitätsgewinn durch Energieerhöhung voll sichtbar

13 TeV: Zugang zu unerforschtem Terrain

ATLAS Exotics Searches* - 95% CL Exclusion

Status: August 2016

	Model	<i>ℓ</i> ,γ	Jets †	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	$\int z dt = (0.2 - 20.0) 10^{-1}$	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH Multijet ADD BH multijet RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\nu$ Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} - \\ 2 \ e, \mu \\ 1 \ e, \mu \\ - \\ 2 \ e, \mu \\ 2 \ \gamma \\ 1 \ e, \mu \\ - \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\geq 1 j$ $-$ $1 j$ $2 j$ $\geq 2 j$ $\geq 3 j$ $-$ $1 J$ $4 b$ $\geq 1 b, \geq 1 J$ $\geq 2 b, \geq 4$		3.2 20.3 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.3 20.3 3.2	Mp 6.58 TeV $n = 2$ Ms 4.7 TeV $n = 3$ HLZ Mth 5.2 TeV $n = 6$ Mth 8.7 TeV $n = 6$ Mth 8.7 TeV $n = 6$ Mth 8.2 TeV $n = 6$ Mth 8.2 TeV $n = 6$ Mth 9.55 TeV $n = 6$, $M_D = 3$ TeV, rot BH GKK mass 2.68 TeV $k/\overline{M}_{Pl} = 0.1$ GKK mass 1.24 TeV $k/\overline{M}_{Pl} = 1.0$ KK mass 2.2 TeV BR = 0.925 KK mass 1.46 TeV Tier (1,1), BR(A^{(1.1)} \to tt) = 1	1604.07773 1407.2410 1311.2006 ATLAS-CONF-2016-069 1606.02265 1512.02586 1405.4123 1606.03833 ATLAS-CONF-2016-062 ATLAS-CONF-2016-049 1505.07018 ATLAS-CONF-2016-013
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{HVT} W' \to WZ \to qq\nu\nu \ \mathrm{model} \ H \\ \operatorname{HVT} W' \to WZ \to qqqq \ \mathrm{model} \ H \\ \operatorname{HVT} V' \to WH/ZH \ \mathrm{model} \ B \\ \operatorname{LRSM} W'_R \to tb \\ \operatorname{LRSM} W'_R \to tb \end{array}$		_ 2 b J 2 J 2 J el 2 b, 0-1 j ≥ 1 b, 1 J	– Yes Yes – Yes	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	Z' mass 4.05 TeV Z' mass 2.02 TeV Z' mass 1.5 TeV W' mass 4.74 TeV W' mass 2.4 TeV $g_V = 1$ W' mass 2.4 TeV $g_V = 3$ V' mass 2.31 TeV $g_V = 3$ W' mass 1.92 TeV $g_V = 3$	ATLAS-CONF-2016-045 1502.07177 1603.08791 ATLAS-CONF-2016-061 ATLAS-CONF-2016-082 ATLAS-CONF-2016-055 1607.05621 1410.4103 1408.0886
Ū	Cl qqqq Cl ℓℓqq Cl uutt	_ 2 e, µ 2(SS)/≥3 e,	2 j ,µ ≥1 b, ≥1	_ _ j Yes	15.7 3.2 20.3	Λ 19.9 TeV $\eta_{LL} = -1$ Λ 25.2 TeV $\eta_{LL} = -1$ Λ 4.9 TeV $ C_{RR} = 1$	ATLAS-CONF-2016-069 1607.03669 1504.04605
No No	Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) $ZZ_{\chi\chi}$ EFT (Dirac DM)		≥ 1 j 1 j 1 J, ≤ 1 j	Yes Yes Yes	3.2 3.2 3.2	$\begin{tabular}{ c c c c c c } \hline $m_{\rm A}$ & $1.0 {\rm TeV}$ & $g_q {=} 0.25, \ $g_{\chi} {=} 1.0, \ $m(\chi)$ < 250 & $g_q {=} 0.25, \ $g_{\chi} {=} 1.0, \ $m(\chi)$ < 150 & $g_q {=} 0.25, \ $g_{\chi} {=} 1.0, \ $m(\chi)$ < 150 & $m(\chi)$ < 150 & $m(\chi)$ < 150 & eV & $m(\chi)$ < 150 & $m(\chi)$ & $m(\chi)$ < 150 & $m(\chi)$ & $m(\chi)$ & $m(\chi)$ < 150 & $m(\chi)$ & $m($	
FC	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	$\begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 1 \ b, \geq 3 \end{array}$	– – j Yes	3.2 3.2 20.3	LQ mass 1.1 TeV $\beta = 1$ LQ mass 1.05 TeV $\beta = 1$ LQ mass 640 GeV $\beta = 0$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WqWq \\ VLQ \ T_{5/3} \ T_{5/3} \rightarrow WtWt \end{array} $	1 e, μ 1 e, μ 1 e, μ 2/≥3 e, μ 1 e, μ 2(SS)/≥3 e,	2	j Yes j Yes - Yes	20.3 20.3 20.3 20.3 20.3 20.3 3.2	T mass855 GeVT in (T.B) doubletY mass770 GeVY in (B,Y) doubletB mass735 GeVisospin singletB mass755 GeVB in (B,Y) doubletQ mass690 GeVFind the control of the	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 ATLAS-CONF-2016-032
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton v^*	1 γ - 1 or 2 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j –	- - Yes -	3.2 15.7 8.8 20.3 20.3 20.3	q* mass 4.4 TeV only u^* and d^* , $\Lambda = m(q^*)$ q* mass 5.6 TeV only u^* and d^* , $\Lambda = m(q^*)$ b* mass 2.3 TeV only u^* and d^* , $\Lambda = m(q^*)$ b* mass 1.5 TeV $f_g = f_L = f_R = 1$ ℓ^* mass 3.0 TeV $\Lambda = 3.0$ TeV v^* mass 1.6 TeV $\Lambda = 1.6$ TeV	1512.05910 ATLAS-CONF-2016-069 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$1 e, \mu, 1 \gamma 2 e, \mu 2 e (SS) 3 e, \mu, \tau 1 e, \mu - - - - - - - - - -$	 1 b 	Yes Yes 3 TeV	20.3 20.3 13.9 20.3 20.3 20.3 7.0	a_T mass960 GeVN° mass2.0 TeVM* mass570 GeVH*± mass570 GeVH*± mass400 GeVspin-1 invisible particle mass657 GeVmulti-charged particle mass785 GeVmonopole mass124 TeV10^{-1}1	=1 1411.2921 1410.5404 1504.04188 1/2 1509.08059

ATLAS Preliminary

 $\sqrt{s} = 8, 13 \text{ TeV}$

 $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$

- Produktionsraten bestimmt durch
 Partonluminositäten
- dramatischer Einbruch bei hohen
 Massen
- **→** 2016:

Sensitivitätsgewinn durch Energieerhöhung voll sichtbar

→ ab 2017:

viele Suchen am kinematischen Limit, neuer Fokus auf seltene Prozesse (im gesamten Massenbereich)

¹⁵ Suche nach dunkler Materie

Im Fokus: das dunkle Universum

¹⁶¹ Suche nach dunkler Materie

171 Suche nach dunkler Materie

Suche nach dunkler Materie

m_z, [GeV]

m_{DM} [GeV]

¹⁹ Suche nach dunkler Materie

²⁰¹ Ein Überschuss taucht auf...

Dezember 2015:

- Überschuss in γγ-Massenspektrum bei
 750 GeV in ATLAS+CMS
- kombinierte Signifikanz >3 σ

Ein Überschuss taucht auf, wird erklärt...

Deutlich über 500 Theorie-Publikationen in 8 Monaten!

Ein Überschuss taucht auf, wird erklärt... und verschwindet 22 |

 $m_{\gamma\gamma}$ (GeV)

Ein Bild für die Lehrbücher: der Higgs-Mechanismus ist Realität!

VH mit $H \rightarrow$ bb: erste Run II Ergebnisse

²⁹¹ LHCb: CP-Verletzung in Baryonzerfällen

Im Fokus: Materie-Antimaterie Asymmetrie

LHCb: CP-Verletzung erstmals in Baryonzerfällen beobachtet

Im Fokus: Materie-Antimaterie Asymmetrie

LHCb: CP-Verletzung erstmals in Baryonzerfällen beobachtet

6700 Λ_{b} → pπππ Zerfälle Messung der CP-Asymmetrie in Phasenraum-Bins → CPV mit Signifikanz 3.3σ [eingereicht bei Nature Physics]

Starke deutsche Beteiligung an Phase 1 und Phase 2 Upgrades

Beispiel Upgrade Phase 1: ATLAS Level 1 Trigger

Beispiel Upgrade Phase 1: ATLAS Level 1 Trigger

Beispiel Upgrade Phase 1: CMS Pixel Detektor

CMS Pixeldetektor wird komplett ersetzt

Beispiel Upgrade Phase 1: CMS Pixel Detektor

CMS Pixeldetektor wird komplett ersetzt

- 4. Barrel-Lage von deutschen Gruppen gebaut
- Modulproduktion erfolgreich abgeschlossen
- Detektor zur Zeit in Endmontage
- Einbau Februar 2017

Beispiel Upgrade Phase 1: LHCb Scintillating Fibre Tracker

Upgrade Phase 2

Alle Projekte: TDRs in 2017, MoU gegen Ende 2017

BMBF-Funding aus FIS-Projekt: zur Zeit R&D, erste core-Mittel in nächster FP

Beispiel ATLAS und CMS Siliziumstreifendetektoren:

Bau jeweils einer Endkappe in Zusammenarbeit deutscher Universitäten und DESY

Zusammenfassung

Energieerhöhung auf 13 TeV: Zugang zu unerforschten Massenregionen Erste Ergebnisse bereits öffentlich, viele neue Ergebnisse für Winterkonferenzen 2017: Fokus verschiebt sich auf Präzisionsmessungen Erst 2% des Gesamtdatensatzes aufgezeichnet, es bleibt spannend!