Covariant diagrams for one-loop EFT matching

Zhengkang Zhang (DESY \& U. Michigan)
Based on 1610.00710

The EFT matching problem

- Given $\mathcal{L}_{\mathrm{UV}}[\Phi, \phi]$ with $M_{\Phi} \gg m_{\phi}$, at low energy $E \ll M_{\Phi}$,

$$
\mathcal{L}_{\mathrm{EFT}}[\phi]=?
$$

- Why interesting?
- Interpretation of model-independent EFT results in UV models.
- Precise calculation of low-energy observables.
" Theoretical curiosity - matching without Feynman diagrams!

The EFT matching problem

$$
\mathcal{L}_{\mathrm{EFT}}[\phi]=?
$$

- Solution \#1: Feynman diagram matching (familiar).
- Calculate scattering amplitudes/correlation functions with Feynman diagrams in both UV theory and EFT.
- Equate the results and solve for EFT operator coefficients.
- Solution \#2: functional matching (more elegant, often simpler).
- Manipulate path integral to directly derive EFT operators.
- Can preserve gauge covariance in intermediate steps via CDE.
- Can obtain universal results (master formulas).

Literature overview

- Earlier developments
" M.K. Gaillard [Nucl.Phys.B268,669 (1986)]
- L.H. Chan [Phys.Rev.Lett.57,1199 (1986)]
- O. Cheyette [Nucl.Phys.B297,183 (1988)]
- Recent revival, developments and applications
" B. Henning, X. Lu, H. Murayama [1412.1837, 1604.01019].
- C.-W. Chiang, R. Huo [1505.06334].
- R. Huo [1506.00840, 1509.05942].
- A. Drozd, J. Ellis, J. Quevillon, T. You [1512.03003].
- F. del Aguila, Z. Kunszt, J. Santiago [1602.00126].
- M. Boggia, R. Gomez-Ambrosio, G. Passarino [1603.03660].
- S. Ellis, J. Quevillon, T. You, ZZ [1604.02445].
- J. Fuentes-Martin, J. Portoles, P. Ruiz-Femenia [1607.02142].
- ZZ [1610.00710].

This talk

- Basic ideas of gauge-covariant functional matching.
- Functional matching at one loop with covariant diagrams.
- Diagrammatic representation of CDE.
- Compare Feynman diagrams --- diagrammatic representation of (non-gauge-covariant) expansion of correlation functions.
- Builds upon previous literature on functional matching, but...
- No complicated functional manipulations; rules easy to use.
- Applicable beyond minimal case.

Basic idea (minimal technical details)

background field

- Matching condition: $\Gamma_{\mathrm{L}, \mathrm{UV}}\left[\phi_{\mathrm{b}}\right]=\Gamma_{\mathrm{EFT}}\left[\phi_{\mathrm{b}}\right]$.
- 1LPI effective action calculated in the UV theory:

$$
\Gamma_{\mathrm{L}, \mathrm{UV}}\left[\phi_{\mathrm{b}}\right]=-i \log Z_{\mathrm{UV}}\left[J_{\Phi}=0, J_{\phi}\right]-\int d^{d} x J_{\phi} \phi_{\mathrm{b}}
$$

- 1PI effective action calculated in the EFT:

$$
\Gamma_{\mathrm{EFT}}\left[\phi_{\mathrm{b}}\right]=-i \log Z_{\mathrm{EFT}}\left[J_{\phi}\right]-\int d^{d} x J_{\phi} \phi_{\mathrm{b}}
$$

where

$$
\begin{aligned}
Z_{\mathrm{UV}}\left[J_{\Phi}, J_{\phi}\right] & =\int[D \Phi][D \phi] e^{i \int d^{d} x\left(\mathcal{L}_{\mathrm{UV}}[\Phi, \phi]+J_{\Phi} \Phi+J_{\phi} \phi\right)} \\
Z_{\mathrm{EFT}}\left[J_{\phi}\right] & =\int[D \phi] e^{i \int d^{d} x\left(\mathcal{L}_{\mathrm{EFT}}[\phi]+J_{\phi} \phi\right)}
\end{aligned}
$$

Background field method

- To calculate 1(L)PI effective actions (real scalar example):

$$
\begin{aligned}
& \Phi=\Phi_{\mathrm{b}}+\Phi^{\prime}, \quad \phi=\phi_{\mathrm{b}}+\phi^{\prime} \quad \Rightarrow \\
& \mathcal{L}_{\mathrm{UV}}[\Phi, \phi]+J_{\Phi} \Phi+J_{\phi} \phi \\
& =\mathcal{L}_{\mathrm{UV}}\left[\Phi_{\mathrm{b}}, \phi_{\mathrm{b}}\right]+J_{\Phi} \Phi_{\mathrm{b}}+J_{\phi} \phi_{\mathrm{b}} \\
& \left.\begin{array}{cc}
\substack{X_{H L}\left[\Phi_{\mathrm{b}}, \phi_{\mathrm{b}}\right] \\
\Delta_{L}\left[\Phi_{\mathrm{b}}, \phi_{\mathrm{b}}\right]}
\end{array}\right)\binom{\Phi^{\prime}}{\phi^{\prime}} \Longrightarrow \text { tree (cl } \\
& +\ldots \\
& \text { higher orders }
\end{aligned}
$$

- Recall $0=\frac{\delta \mathcal{L}_{\mathrm{UV}}}{\delta \Phi}\left[\Phi_{\mathrm{b}}, \phi_{\mathrm{b}}\right]+J_{\Phi}=\frac{\delta \mathcal{L}_{\mathrm{UV}}}{\delta \phi}\left[\Phi_{\mathrm{b}}, \phi_{\mathrm{b}}\right]+J_{\phi} \Rightarrow$ linear terms vanish.
- Similar expansion on the EFT side.

Matching results

- Assuming $X_{H L}=X_{L H}=0$ for now (will generalize later),

$$
\begin{gathered}
\mathcal{L}_{\mathrm{EFT}}^{\mathrm{tree}}[\phi]=\mathcal{L}_{\mathrm{UV}}\left[\Phi_{\mathrm{c}}[\phi], \phi\right] \\
\int d^{d} x \mathcal{L}_{\mathrm{EFT}}^{1-\mathrm{loop}}[\phi]=\frac{i}{2} \log \operatorname{det} \Delta_{H}\left[\Phi_{\mathrm{c}}[\phi], \phi\right]=\frac{i}{2} \operatorname{Tr} \log \Delta_{H}\left[\Phi_{\mathrm{c}}[\phi], \phi\right]
\end{gathered}
$$

where $\Phi_{\mathrm{c}}[\phi]$ solves the classical EoM: $\frac{\delta \mathcal{L}_{\mathrm{UV}}}{\delta \Phi}\left[\Phi_{\mathrm{c}}[\phi], \phi\right]=0$.

Evaluating functional trace (familiar from quantum mechanics)

$$
\begin{aligned}
& \operatorname{Tr} \mathcal{O}(\hat{x}, \hat{p}) \\
= & \int \frac{d^{d} q}{(2 \pi)^{d}}\langle q| \operatorname{tr} \mathcal{O}(\hat{x}, \hat{p})|q\rangle=\int d^{d} x \int \frac{d^{d} q}{(2 \pi)^{d}}\langle q \mid x\rangle\langle x| \operatorname{tr} \mathcal{O}(\hat{x}, \hat{p})|q\rangle \\
= & \int d^{d} x \int \frac{d^{d} q}{(2 \pi)^{d}} e^{i q \cdot x} \operatorname{tr} \mathcal{O}\left(x, i \partial_{x}\right) e^{-i q \cdot x}=\int d^{d} x \int \frac{d^{d} q}{(2 \pi)^{d}} \operatorname{tr} \mathcal{O}\left(x, i \partial_{x}+q\right) \\
= & \int d^{d} x \int \frac{d^{d} q}{(2 \pi)^{d}} \operatorname{tr} \mathcal{O}\left(x, i \partial_{x}-q\right)
\end{aligned}
$$

- Recall $\int d^{d} x \mathcal{L}_{\mathrm{EFT}}^{1 \text {-loop }}[\phi]=\frac{i}{2} \operatorname{Tr} \log \Delta_{H}$
$P_{\mu} \equiv i D_{\mu}$ (hermitian)

$$
\Rightarrow \quad \mathcal{L}_{\mathrm{EFT}}^{1 \text {-loop }}[\phi]=\left.\frac{i}{2} \int \frac{d^{d} q}{(2 \pi)^{d}} \operatorname{tr} \log \Delta_{H}\right|_{P \rightarrow P-q}
$$

Covariant derivative expansion (CDE)

Fuentes-Martin-Portoles-Ruiz-Femenia version (1607.02142)

- Recall $\mathcal{L}_{\mathrm{UV}}\left[\Phi=\Phi_{\mathrm{b}}+\Phi^{\prime}, \phi=\phi_{\mathrm{b}}+\phi^{\prime}\right] \supset-\frac{1}{2} \Phi^{\prime T} \Delta_{H}\left[\Phi_{\mathrm{b}}, \phi_{\mathrm{b}}\right] \Phi^{\prime}$
- General form of quadratic terms for bosonic fields:

$$
\Delta_{H}=-P^{2}+M^{2}+X_{H}
$$

where

$$
\begin{aligned}
P_{\mu}= & i D_{\mu}, \quad M=\operatorname{diag}\left(M_{1}, M_{2}, \ldots\right), \\
X_{H}\left[\Phi, \phi, P_{\mu}\right]= & U_{H}[\Phi, \phi]+P_{\mu} Z_{H}^{\mu}[\Phi, \phi]+Z_{H}^{\dagger \mu}[\Phi, \phi] P_{\mu} \\
& +P_{\mu} P_{\nu} Z_{H}^{\mu \nu}[\Phi, \phi]+Z_{H}^{\dagger \mu \nu}[\Phi, \phi] P_{\nu} P^{\mu}+\ldots
\end{aligned}
$$

Covariant derivative expansion (CDE)

Fuentes-Martin-Portoles-Ruiz-Femenia version (1607.02142)

$$
\Delta_{H}=-P^{2}+M^{2}+X_{H}
$$

- Expand for $M \rightarrow \infty$ while keeping P_{μ} 's intact (as opposed to separating into $i \partial_{\mu}$ and $g A_{\mu}^{a} T^{a}$).

$$
\begin{aligned}
\Rightarrow \mathcal{L}_{\mathrm{EFT}}^{1-\mathrm{loop}}[\phi] & =\left.\frac{i}{2} \int \frac{d^{d} q}{(2 \pi)^{d}} \operatorname{tr} \log \Delta_{H}\right|_{P \rightarrow P-q} \\
& =\frac{i}{2} \int \frac{d^{d} q}{(2 \pi)^{d}} \operatorname{tr} \log \left(-q^{2}+M^{2}+2 q \cdot P-P^{2}+\left.X_{H}\right|_{P \rightarrow P-q}\right) \\
& =\text { const. }-\frac{i}{2} \operatorname{tr} \sum_{n=1}^{\infty} \frac{1}{n} \int \frac{d^{d} q}{(2 \pi)^{d}}\left[\left(q^{2}-M^{2}\right)^{-1}\left(2 q \cdot P-P^{2}+\left.X_{H}\right|_{P \rightarrow P-q}\right)\right]^{n}
\end{aligned}
$$

To recap...

- Matching condition: $\Gamma_{\mathrm{L}, \mathrm{UV}}\left[\phi_{\mathrm{b}}\right]=\Gamma_{\mathrm{EFT}}\left[\phi_{\mathrm{b}}\right]$.
- Background field method $\Phi=\Phi_{\mathrm{b}}+\Phi^{\prime}, \phi=\phi_{\mathrm{b}}+\phi^{\prime} \Rightarrow$ (details skipped)

$$
\int d^{d} x \mathcal{L}_{\mathrm{EFT}}^{1-\mathrm{loop}}[\phi]=\frac{i}{2} \log \operatorname{det} \Delta_{H}\left[\Phi_{\mathrm{c}}[\phi], \phi\right]=\frac{i}{2} \operatorname{Tr} \log \Delta_{H}\left[\Phi_{\mathrm{c}}[\phi], \phi\right]
$$

- Evaluate trace $\Rightarrow \mathcal{L}_{\text {EFT }}^{1-1 \text { loop }}[\phi]=\left.\frac{i}{2} \int \frac{d^{d} q}{(2 \pi)^{d}} \operatorname{tr} \log \Delta_{H}\right|_{P \rightarrow P-q}$
- Plug in general form $\Delta_{H}=-P^{2}+M^{2}+X_{H}$ and perform CDE
$\mathcal{L}_{\mathrm{EFT}}^{\text {1-loop }}[\phi]=-\frac{i}{2} \operatorname{tr} \sum_{n=1}^{\infty} \frac{1}{n} \int \frac{d^{d} q}{(2 \pi)^{d}}\left[\left(q^{2}-M^{2}\right)^{-1}\left(2 q \cdot P-P^{2}+\left.X_{H}\right|_{P \rightarrow P-q}\right)\right]^{n}$

Covariant diagrams

$\mathcal{L}_{\text {EFT }}^{1 \text { Ilopp }[\phi]=-\frac{i}{2}} \operatorname{tr} \sum_{n=1}^{\infty} \frac{1}{n} \int \frac{d^{d} q}{(2 \pi)^{d}}\left[\left(q^{2}-M^{2}\right)^{-1}\left(2 q \cdot P-P^{2}+\left.X_{H}\right|_{P \rightarrow P-q}\right)\right]^{n}$

- This is a sum of one-loop diagrams!
- Loop integrals factor out, with the form

master integral

$$
\int \frac{d^{d} q}{(2 \pi)^{d}} \frac{q^{\mu_{1}} \cdots q^{\mu_{2 n_{c}}}}{\left(q^{2}-M_{i}^{2}\right)^{n_{i}}\left(q^{2}-M_{j}^{2}\right)^{n_{j}} \cdots} \equiv g^{\mu_{1} \ldots \mu_{2 n_{c}}} \mathcal{I}\left[q^{2 n_{c}}\right]_{i j \ldots}^{n_{i} n_{j} \ldots}
$$

completely symmetric tensor, e.g. $g^{\mu \nu \rho \sigma}=g^{\mu \nu} g^{\rho \sigma}+g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}$

- All terms Lorentz-contract P_{μ} 's from $2 q \cdot P$ insertions in all possible ways.

Example:
 threshold matching of gauge coupling (scalar case)

- Integrate out a complex scalar of mass M, and extract $P^{4} \sim D^{4} \sim G^{2}$ terms in the EFT.

$$
\begin{aligned}
& \quad=\frac{2 i g^{2} \mathcal{I}\left[q^{4}\right]_{i}^{4} \operatorname{tr}\left(G^{\mu \nu} G_{\mu \nu}\right)=-\frac{g^{2}}{16 \pi^{2}} \frac{1}{3} \log \frac{M^{2}}{\mu^{2}}\left[-\frac{1}{4} \operatorname{tr}\left(G^{\mu \nu} G_{\mu \nu}\right)\right]}{\quad \Rightarrow \quad \frac{g_{\mathrm{eff}}^{2}(\mu)}{g^{2}(\mu)}=1+\frac{g^{2}}{16 \pi^{2}} T(R) \cdot \frac{1}{3} \log \frac{M^{2}}{\mu^{2}}} \text { Dynkin index of representation R }
\end{aligned}
$$

- 1 complex scalar $=2$ real scalars.
- Symmetry factor due to Z_{4} symmetry under rotation.
- The diagram calculated on the LHS is sufficient to fix the coefficient of the operator on the RHS.

Universal master formula

(EFT matching reduced to matrix aigebra!)

- Assuming $X_{H L}=X_{L H}=0\left(\right.$ as I did above) and $X_{H}\left[\Phi, \phi, P_{\mu}\right]=U_{H}[\Phi, \phi]$
- A. Drozd, J. Ellis, J. Quevillon, T. You (1512.03003) derived a master formula for one-loop matching up to dimension-six level, dubbed the Universal One-Loop Effective Action (UOLEA).
- The degenerate limit of the UOLEA was reported earlier by B. Henning, X. Lu, H. Murayama (1412.1837).
- In 1610.00710, I re-derived the UOLEA using covariant diagrams, which greatly simplify the calculation.

Universal master formula
 (EFT matching reduced to matrix algebra!)

Up to dimension-6:

18 covariant diagrams => 18 terms in the $C D E=>18$ independent operator traces

Universal master formula (EFT matching reduced to matrix aigebra!)

$\mathcal{L}_{\text {EFT }}^{1 \text {-loop }}$
$=\sum($ universal coefficient $\times \operatorname{tr}($ operator $))$

- How to use the master formula:

Given a UV model,

- Extract the U matrix
- Plug in and calculate traces
- Add up all terms
- Done!
- For examples, see
- Henning, Lu, Murayama (1412.1837)
- Chiang, Huo (1505.06334)
- Huo (1506.00840, 1509.05942)
- Drozd, Ellis, Quevillon, You (1512.03003)

Universal coefficient	Operator
$f_{2}^{i}=\mathcal{I}_{i}^{1}$	$U_{i i}$
$f_{3}^{i}=2 \mathcal{I}\left[q^{4}\right]_{i}^{4}$	$G_{i}^{\prime \mu \nu} G_{\mu \nu, i}^{\prime}$
$f_{4}^{i j}=\frac{1}{2} \mathcal{I}_{i j}^{11}$	$U_{i j} U_{j i}$
$f_{5}^{i}=16 \mathcal{I}\left[q^{6}\right]_{i}^{6}$	$\left[P^{\mu}, G_{\mu \nu, i}^{\prime}\right]\left[P_{\rho}, G_{i}^{\prime \rho \nu}\right]$
$f_{6}^{i}=\frac{32}{3} \mathcal{I}\left[q^{6}\right]_{i}^{6}$	$G^{\prime \mu}{ }_{\nu, i} G^{\prime \prime}{ }_{\rho, i} G^{\prime \rho}{ }_{\mu, i}$
$f_{7}^{i j}=\mathcal{I}\left[q^{2}\right]_{i j}^{22}$	$\left[P^{\mu}, U_{i j}\right]\left[P_{\mu}, U_{j i}\right]$
$f_{8}^{i j k}=\frac{1}{3} \mathcal{I}_{i j k}^{111}$	$U_{i j} U_{j k} U_{k i}$
$f_{9}^{i}=8 \mathcal{I}\left[q^{4}\right]_{i}^{5}$	$U_{i i} G_{i}^{\prime \mu \nu} G_{\mu \nu, i}^{\prime}$
$f_{10}^{i j k l}=\frac{1}{4} \mathcal{I}_{i j k l}^{1111}$	$U_{i j} U_{j k} U_{k l} U_{l i}$
$f_{11}^{i j k}=2\left(\mathcal{I}\left[q^{2}\right]_{i j k}^{122}+\mathcal{I}\left[q^{2}\right]_{i j k}^{212}\right)$	$U_{i j}\left[P^{\mu}, U_{j k}\right]\left[P_{\mu}, U_{k i}\right]$
$f_{12}^{i j}=4 \mathcal{I}\left[q^{4}\right]_{i j}^{33}$	$\left[P^{\mu},\left[P_{\mu}, U_{i j}\right]\right]\left[P^{\nu},\left[P_{\nu}, U_{j i}\right]\right]$
$\begin{aligned} f_{13}^{i j}= & 4\left(\mathcal{I}\left[q^{4}\right]_{i j}^{33}\right. \\ & \left.+2 \mathcal{I}\left[q^{4}\right]_{i j}^{42}+2 \mathcal{I}\left[q^{4}\right]_{i j}^{51}\right) \end{aligned}$	$U_{i j} U_{j i} G_{i}^{\prime \mu \nu} G_{\mu \nu, i}^{\prime}$
$f_{14}^{i j}=-8 \mathcal{I}\left[q^{4}\right]_{i j}^{33}$	$\left.{ }^{\left[P^{\mu}\right.}, U_{i j}\right]\left[P^{\nu}, U_{j i}\right] G_{\nu \mu, i}^{\prime}$
$f_{15}^{i j}=\left(\mathcal{I}\left[q^{4}\right]_{i j}^{33}+\mathcal{I}\left[q^{4}\right]_{i j}^{42}\right)$	$\left(U_{i j}\left[P^{\mu}, U_{j i}\right]-\left[P^{\mu}, U_{i j}\right] U_{j i}\right)\left[P^{\nu}, G_{\nu \mu, i}^{\prime}\right]$
$f_{16}^{i j k l m}=\frac{1}{5} \mathcal{I}_{i j k l m}^{1111}$	$U_{i j} U_{j k} U_{k l} U_{l m} U_{m i}$
$\begin{aligned} f_{17}^{i j k l}= & 2\left(\mathcal{I}\left[q^{2}\right]_{i j 112 l}^{2112}\right. \\ & \left.+\mathcal{I}\left[q^{2}\right]_{i j k l}^{2121}+\mathcal{I}\left[q^{2}\right]_{i j k l}^{1122}\right) \end{aligned}$	$U_{i j} U_{j k}\left[P^{\mu}, U_{k l}\right]\left[P_{\mu}, U_{l i}\right]$
$\begin{aligned} f_{18}^{i j k l}= & \mathcal{I}\left[q^{2}\right]_{i j k l}^{2121}+\mathcal{I}\left[q^{2}\right]_{i j k l}^{2112} \\ & +\mathcal{I}\left[q^{2}\right]_{i j k l}^{1221}+\mathcal{I}\left[q^{2}\right]_{i j k l}^{1212} \end{aligned}$	$U_{i j}\left[P^{\mu}, U_{j k}\right] U_{k l}\left[P_{\mu}, U_{l i}\right]$
$f_{19}^{i j k l m n}=\frac{1}{6} \mathcal{L}_{i j k l m n}^{11111}$	$U_{i j} U_{j k} U_{k l} U_{l m} U_{m n} U_{n i}$

But that is not all!

- The UOLEA master formula does not account for
- $X_{H L}, X_{L H} \neq 0$
- Z terms in $X_{H}\left[\Phi, \phi, P_{\mu}\right]=U_{H}[\Phi, \phi]+P_{\mu} Z_{H}^{\mu}[\Phi, \phi]+Z_{H}^{\dagger \mu}[\Phi, \phi] P_{\mu}$

$$
+P_{\mu} P_{\nu} Z_{H}^{\mu \nu}[\Phi, \phi]+Z_{H}^{\dagger \mu \nu}[\Phi, \phi] P_{\nu} P^{\mu}+\ldots
$$

- Mixed statistics (bosonic+fermionic)
- Covariant diagrams are capable of dealing with all these additional structures, and so can be used to
- derive extended master formulas;
- do matching calculations for specific UV models.

The rules (1/4)

- The derivations involve technical functional manipulations, so here I only tell you the rules (which are very simple and intuitive and you can immediately use!).
- We already encountered the following rules for heavy loops:

Element of diagram	Symbol	Expression
heavy propagator (bosonic)	$\frac{i}{i}$	1
P insertion (bosonic, heavy)	\vdots	$2 P_{\mu} \delta_{i j}$
U insertion (heavy-heavy)	$\underline{i}{ }^{j}$	$U_{H i j}$

The rules (2/4)

- When $X_{H L}, X_{L H} \neq 0$, we should also draw mixed heavy-light loop diagrams, with the following additional ingredients:

Element of diagram	Symbol	Expression
light propagator (bosonic)	$-i^{i^{\prime}}-$	1
light mass insertion (bosonic)	$-i_{-x}^{\prime} \underline{j}_{-}^{j^{\prime}}$	$m_{i^{\prime}}^{2} \delta_{i^{\prime} j^{\prime}}$
P insertion (bosonic, light)	$-\underline{i}_{-}^{\prime}$	$2 P_{\mu} \delta_{i^{\prime} j^{\prime}}$
U insertion (heavy-light)	$\underline{i} \underline{i}_{-}^{j^{\prime}}$	$U_{H L i j^{\prime}}$
U insertion (light-heavy)	$\underline{i}_{-}^{\prime} \underline{j}$	$U_{L H i^{\prime} j}$
U insertion (light-light)	$\underline{i}_{-}^{\prime} \underline{j}_{-}^{\prime}$	$U_{L i^{\prime} j^{\prime}}$

The rules (3/4)

- When $\mathbf{X}\left[\Phi, \phi, P_{\mu}\right]=\mathbf{U}[\Phi, \phi]+P_{\mu} \mathbf{Z}^{\mu}[\Phi, \phi]+\mathbf{Z}^{\dagger \mu}[\Phi, \phi] P_{\mu}$ (boldface for full matrix containing H, HL, LH, L blocks), draw additional diagrams with Z insertions, with the following rules:

Element of diagram	Symbol	Expression	Element of diagram	Symbol	Expression
Z insertion (uncontracted, heavy-heavy) Z insertion (uncontracted, heavy-light) Z insertion (uncontracted, light-heavy) Z insertion (uncontracted, light-light) Z insertion (contracted, heavy-heavy) Z insertion (contracted, heavy-light) Z insertion (contracted, light-heavy) Z insertion (contracted, light-light)		$\begin{gathered} \hline P_{\mu} Z_{H i j}^{\mu} \\ P_{\mu} Z_{H L i j^{\prime}}^{\mu} \\ P_{\mu} Z_{L H i^{\prime} j}^{\mu} \\ P_{\mu} Z_{L i^{\prime} j^{\prime}}^{\mu} \\ -Z_{H i j}^{\mu} \\ -Z_{H L i j^{\prime}}^{\mu} \\ -Z_{L H i^{\prime} j}^{\mu} \\ -Z_{L i^{\prime} j^{\prime}}^{\mu} \\ \hline \end{gathered}$	```Z Z insertion (uncontracted, heavy-light) Z Z 'insertion (uncontracted, light-light) Z insertion (contracted, heavy-heavy) Z}\mp@subsup{}{}{\dagger}\mathrm{ insertion (contracted, heavy-light) Z 'insertion (contracted, light-heavy) Z insertion (contracted, light-light)```		$\begin{gathered} Z_{H i j}^{\dagger \mu} P_{\mu} \\ Z_{L H i j^{\prime}}^{\dagger \mu} P_{\mu} \\ Z_{H L i^{\prime} j}^{\dagger \mu} P_{\mu} \\ Z_{L i^{\prime} j^{\prime}}^{\dagger \mu} P_{\mu} \\ -Z_{H i j}^{\dagger \mu} \\ -Z_{L H i j^{\prime}}^{\dagger \mu} \\ -Z_{H L i^{\prime} j}^{\dagger \mu} \\ -Z_{L i^{\prime} j^{\prime}}^{\dagger \mu} \end{gathered}$

- Terms with more P_{μ} 's can be similarly dealt with.

The rules (4/4)

- For matching calculations involving Dirac fermions, use the following rules:

Element of diagram	Symbol	Expression
heavy propagator (fermionic, uncontracted)	$-\frac{i}{i}$	M_{i}
heavy propagator (fermionic, contracted)	$-\vdots$	$-\gamma^{\mu}$
light propagator (fermionic)	$-i^{\prime}--$	$-\gamma^{\mu}$
light mass insertion (fermionic)	$-i_{-x}^{\prime} \underline{j}_{-}^{\prime}$	$m_{i^{\prime} \delta^{\prime} j^{\prime} j^{\prime}}$
P insertion (fermionic, heavy)	$-\frac{j}{i}$	$-\not P \delta_{i j}$
P insertion (fermionic, light)	$-i_{-}^{\prime} j_{-}^{\prime}$	$-\not P \delta_{i^{\prime} j^{\prime}}$

- Rules for Weyl fermions can be derived similarly.

The rules (further comments)

- Master integrals are generalized for mixed heavy-light loops:
$\int \frac{d^{d} q}{(2 \pi)^{d}} \frac{q^{\mu_{1}} \cdots q^{\mu_{2 n_{c}}}}{\left(q^{2}-M_{i}^{2}\right)^{n_{i}}\left(q^{2}-M_{j}^{2}\right)^{n_{j}} \cdots\left(q^{2}\right)^{n_{L}}} \equiv g^{\mu_{1} \ldots \mu_{2 n_{c}}} \mathcal{I}\left[q^{2 n_{c}}\right]_{i j \ldots 0}^{n_{i} n_{j} \ldots n_{L}}$
= $n_{i}, n_{j}, \ldots=$ number of heavy propagators of type i, j, \ldots
- $n_{L}=$ number of light propagators
- $n_{c}=$ number of Lorentz contractions (dotted lines)
- Prefactor has opposite signs for bosonic vs. fermionic loops.
- For mixed bosonic-fermionic loops, prefactor is determined by the propagator from which one starts reading the diagram.
- Diagrams giving rise to $\operatorname{tr}\left(\ldots P^{2} \ldots\right)$ can be omitted as other diagrams are sufficient to determine all independent operator coefficients.

Example:
 Integrating out a scalar triple \dagger

- Test case for mixed heavy-light matching.

$$
\mathcal{L}_{\mathrm{UV}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2}\left(D_{\mu} \Phi^{a}\right)^{2}-\frac{1}{2} M^{2} \Phi^{a} \Phi^{a}-\frac{1}{4} \lambda_{\Phi}\left(\Phi^{a} \Phi^{a}\right)^{2}+\kappa \phi^{\dagger} \sigma^{a} \phi \Phi^{a}-\eta|\phi|^{2} \Phi^{a} \Phi^{a}
$$

- We shall focus on mixed heavy-light contributions to

$$
\mathcal{O}_{T}=\frac{1}{2}\left(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi\right)^{2}, \quad \mathcal{O}_{H}=\frac{1}{2}\left(\partial_{\mu}|\phi|^{2}\right)^{2}, \quad \mathcal{O}_{R}=|\phi|^{2}\left|D_{\mu} \phi\right|^{2}
$$

- Scalar sector: contributions independent of g, g^{\prime}.
- Gauge sector: contributions dependent of g, g^{\prime} (involve Z terms).

Example:

Integrating out a scalar triplet (scalar sector)

- First, extract quadratic pieces:

$$
\mathcal{L}_{\mathrm{UV}, \text { quad. }} \supset-\frac{1}{2}\left(\Phi^{\prime a} \phi^{\prime \dagger} \tilde{\phi}^{\prime \dagger}\right)\left(-P^{2}+\mathbf{M}^{2}+\mathbf{U}\left[\Phi_{\mathrm{b}}, \phi_{\mathrm{b}}, \tilde{\phi}_{\mathrm{b}}\right]\right)\left(\begin{array}{c}
\Phi^{\prime b} \\
\phi^{\prime} \\
\tilde{\phi}^{\prime}
\end{array}\right), \tilde{\phi} \equiv i \sigma^{2} \phi^{*}
$$

where

$$
\begin{aligned}
& \mathbf{M}^{2}= \operatorname{diag}\left(M^{2} \delta^{a b}, m^{2}, m^{2}\right) \quad \mathbf{U}=\left(\begin{array}{cc}
U_{H} & \left(U_{H L}\right)_{1 \times 2} \\
\left(U_{L H}\right)_{2 \times 1} & \left(U_{L}\right)_{2 \times 2}
\end{array}\right)=\left(\begin{array}{cc}
U_{\Phi}^{a b} & \left(U_{\phi \Phi}^{\dagger a}\right)_{1 \times 2} \\
\left(U_{\phi \Phi}^{b}\right)_{2 \times 1} & \left(U_{\phi}\right)_{2 \times 2}
\end{array}\right) \\
& \Phi_{\mathrm{c}}^{a}[\phi]=\frac{\kappa}{M^{2}} \phi^{\dagger} \sigma^{a} \phi-\frac{\kappa}{M^{4}}\left[2 \eta|\phi|^{2}\left(\phi^{\dagger} \sigma^{a} \phi\right)+D^{2}\left(\phi^{\dagger} \sigma^{a} \phi\right)\right]+\mathcal{O}\left(M^{-5}\right) \\
& U_{\Phi}^{a b}= 2 \eta|\phi|^{2} \delta^{a b}+\lambda_{\Phi}\left(\Phi_{\mathrm{c}}^{d} \Phi_{\mathrm{c}}^{d} \delta^{a b}+2 \Phi_{\mathrm{c}}^{a} \Phi_{\mathrm{c}}^{b}\right) \sim \mathcal{O}\left(\phi^{2}, \phi^{4}, P^{2} \phi^{4}, \ldots\right) \\
& U_{\phi \Phi}^{b}=\binom{-\kappa \sigma^{b} \phi+2 \eta \phi \Phi_{\mathrm{c}}^{b}}{\kappa \sigma^{b} \tilde{\phi}+2 \eta \tilde{\phi} \Phi_{\mathrm{c}}^{b}} \sim \mathcal{O}\left(\phi, \phi^{3}, P^{2} \phi^{3}, \ldots\right) \\
& U_{\phi}=\left(\begin{array}{cc}
2 \lambda\left(|\phi|^{2} \mathbb{1}_{2}+\phi \phi^{\dagger}\right)-\kappa \Phi_{\mathrm{c}}^{d} \sigma^{d}+\eta \Phi_{\mathrm{c}}^{d} \Phi_{\mathrm{c}}^{d} \mathbb{1}_{2} \\
2 \lambda \tilde{\phi} \phi^{\dagger} & 2 \lambda\left(|\phi|^{2} \mathbb{1}_{2}+\tilde{\phi} \tilde{\phi}^{\dagger}\right)+\kappa \Phi_{\mathrm{c}}^{d} \sigma^{d}+\eta \Phi_{\mathrm{c}}^{d} \Phi_{\mathrm{c}}^{d} \mathbb{1}_{2}
\end{array}\right) \\
& \sim \mathcal{O}\left(\phi^{2}, \phi^{4}, P^{2} \phi^{2}, P^{2} \phi^{4}, \ldots\right)
\end{aligned}
$$

Example:
 Integrating out a scalar triplet (scalar sector)

- Second, identify terms to be computed

$$
\mathcal{O}_{T}=\frac{1}{2}\left(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi\right)^{2}, \quad \mathcal{O}_{H}=\frac{1}{2}\left(\partial_{\mu}|\phi|^{2}\right)^{2}, \quad \mathcal{O}_{R}=|\phi|^{2}\left|D_{\mu} \phi\right|^{2}
$$

- All these operators are $\mathcal{O}\left(P^{2} \phi^{4}\right)$, so need to compute covariant diagrams proportional to

$$
U_{H L} U_{L H}, U_{H L} U_{L} U_{L H}, P^{2} U_{H L} U_{L H}, P^{2} U_{H L} U_{L H} U_{H}, P^{2} U_{H L} U_{L} U_{L H}, P^{2}\left(U_{H L} U_{L H}\right)^{2} .
$$

- Then, draw diagrams and calculate!

Example:

Integrating out a scalar triplet (scalar sector)

$$
\begin{align*}
& \oint_{\text {O, }}^{0}=-i c_{s} \mathcal{I}_{i 0}^{11} \operatorname{tr}\left(U_{H L} U_{L H}\right) \text {, } \tag{4.29a}
\end{align*}
$$

$$
\begin{align*}
& =-i c_{s} 2^{2}\left\{\mathcal{I}\left[q^{2}\right]_{i 0}^{41} \operatorname{tr}\left(P_{\mu} U_{H L} U_{L H} P^{\mu} U_{H}\right)\right. \\
& \left.+\mathcal{I}\left[q^{2}\right]_{i 0}^{32} \operatorname{tr}\left(P^{\mu} U_{H} U_{H L} P_{\mu} U_{L H}+P^{\mu} U_{H L} P_{\mu} U_{L H} U_{H}\right)\right\} \\
& \subset-i c_{s}\left\{4 \mathcal{I}\left[q^{2}\right]_{i 0}^{32} \operatorname{tr}\left(\left[P^{\mu}, U_{H L}\right]\left[P_{\mu}, U_{L H}\right] U_{H}\right)\right. \\
& \left.+2\left(\mathcal{I}\left[q^{2}\right]_{i 0}^{41}+\mathcal{I}\left[q^{2}\right]_{i 0}^{32}\right) \operatorname{tr}\left(\left[P^{\mu}, U_{H L} U_{L H}\right]\left[P_{\mu}, U_{H}\right]\right)\right\}, \tag{4.29~d}
\end{align*}
$$

Example:

Integrating out a scalar triplet (scaiar sector)

$$
\begin{align*}
& =-i c_{s} 2^{2}\left\{\mathcal{I}\left[q^{2}\right]_{i 0}^{14} \operatorname{tr}\left(P_{\mu} U_{L H} U_{H L} P^{\mu} U_{L}\right)\right. \\
& \left.+\mathcal{I}\left[q^{2}\right]_{i 0}^{23} \operatorname{tr}\left(P^{\mu} U_{L} U_{L H} P_{\mu} U_{H L}+P^{\mu} U_{L H} P_{\mu} U_{H L} U_{L}\right)\right\} \\
& \subset-i c_{s}\left\{4 \mathcal{I}\left[q^{2}\right]_{i 0}^{23} \operatorname{tr}\left(\left[P^{\mu}, U_{L H}\right]\left[P_{\mu}, U_{H L}\right] U_{L}\right)\right. \\
& \left.+2\left(\mathcal{I}\left[q^{2}\right]_{i 0}^{14}+\mathcal{I}\left[q^{2}\right]_{i 0}^{23}\right) \operatorname{tr}\left(\left[P^{\mu}, U_{L H} U_{H L}\right]\left[P_{\mu}, U_{L}\right]\right)\right\}, \tag{4.29e}\\
& =-i c_{s} 2^{2}\left\{\frac{1}{2} \mathcal{I}\left[q^{2}\right]_{i 0}^{42} \operatorname{tr}\left(P^{\mu} U_{H L} U_{L H} P_{\mu} U_{H L} U_{L H}\right)+\frac{1}{2} \mathcal{I}\left[q^{2}\right]_{i 0}^{24} \operatorname{tr}\left(P^{\mu} U_{L H} U_{H L} P_{\mu} U_{L H} U_{H L}\right)\right. \\
& \left.+\mathcal{I}\left[q^{2}\right]_{i 0}^{33} \operatorname{tr}\left(P^{\mu} U_{H L} P_{\mu} U_{L H} U_{H L} U_{L H}+P^{\mu} U_{L H} P_{\mu} U_{H L} U_{L H} U_{H L}\right)\right\} \\
& \subset-i c_{s}\left\{\left(2 \mathcal{I}\left[q^{2}\right]_{i 0}^{24}+4 \mathcal{I}\left[q^{2}\right]_{i 0}^{33}\right) \operatorname{tr}\left(\left[P^{\mu}, U_{H L}\right]\left[P_{\mu}, U_{L H}\right] U_{H L} U_{L H}\right)\right. \\
& +\left(2 \mathcal{I}\left[q^{2}\right]_{i 0}^{42}+4 \mathcal{I}\left[q^{2}\right]_{i 0}^{33}\right) \operatorname{tr}\left(\left[P^{\mu}, U_{L H}\right]\left[P_{\mu}, U_{H L}\right] U_{L H} U_{H L}\right) \\
& +\left(\mathcal{I}\left[q^{2}\right]_{i 0}^{42}+\mathcal{I}\left[q^{2}\right]_{i 0}^{24}+2 \mathcal{I}\left[q^{2}\right]_{i 0}^{33}\right) \\
& \left.\operatorname{tr}\left(\left[P^{\mu}, U_{H L}\right] U_{L H}\left[P_{\mu}, U_{H L}\right] U_{L H}+U_{H L}\left[P^{\mu}, U_{L H}\right] U_{H L}\left[P_{\mu}, U_{L H}\right]\right)\right\} . \tag{4.29f}
\end{align*}
$$

Coefficient	Operator
$-i c_{s} \mathcal{I}_{i 0}^{11}=\frac{c_{s}}{16 \pi^{2}}\left(1-\log \frac{M^{2}}{\mu^{2}}\right)$	$\begin{aligned} & \operatorname{tr}\left(U_{H L} U_{L H}\right) \\ & \rightarrow U_{\phi \Phi}^{\dagger a} U_{\phi \Phi}^{a} \supset-\frac{16 \kappa^{2} \eta^{4}}{M^{4}}\left(\mathcal{O}_{T}+2 \mathcal{O}_{R}\right) \end{aligned}$
$-i c_{s} \mathcal{I}_{i 0}^{12}=\frac{c_{s}}{16 \pi^{2}} \frac{1}{M^{2}}\left(1-\log \frac{M^{2}}{\mu^{2}}\right)$	$\begin{aligned} & \operatorname{tr}\left(U_{H L} U_{L} U_{L H}\right) \\ & \rightarrow U_{\phi \Phi}^{\dagger a} U_{\phi} U_{\phi \Phi}^{a} \supset \frac{4 \kappa^{4}}{M^{4}}\left(\mathcal{O}_{T}+2 \mathcal{O}_{R}\right) \end{aligned}$
$-i c_{s} 2 \mathcal{I}\left[q^{2}\right]_{i 0}^{22}=\frac{c_{s}}{16 \pi^{2}}\left(-\frac{1}{2 M^{2}}\right)$	$\begin{aligned} & \operatorname{tr}\left(\left[P^{\mu}, U_{H L}\right]\left[P_{\mu}, U_{L H}\right]\right) \\ & \rightarrow\left[P^{\mu}, U_{\phi \Phi}^{\dagger a}\right]\left[P_{\mu}, U_{\phi \Phi}^{a}\right] \\ & \quad \supset-6 \kappa^{2}\left\|D_{\mu} \phi\right\|^{2}+\frac{8 \kappa^{2} \eta}{M^{2}}\left(\mathcal{O}_{H}+\mathcal{O}_{R}\right) \end{aligned}$
$-i c_{s} 4 \mathcal{I}\left[q^{2}\right]_{i 0}^{32}=\frac{c_{s}}{16 \pi^{2}} \frac{1}{2 M^{4}}$	$\begin{aligned} & \operatorname{tr}\left(\left[P^{\mu}, U_{H L}\right]\left[P_{\mu}, U_{L H}\right] U_{H}\right) \\ & \rightarrow\left[P^{\mu}, U_{\phi \Phi}^{\dagger a}\right]\left[P_{\mu}, U_{\phi \Phi}^{b}\right] U_{\Phi}^{b a} \supset-12 \kappa^{2} \eta \mathcal{O}_{R} \end{aligned}$
$-i c_{s} 2\left(\mathcal{I}\left[q^{2}\right]_{i 0}^{41}+\mathcal{I}\left[q^{2}\right]_{i 0}^{32}\right)=\frac{c_{s}}{16 \pi^{2}} \frac{1}{3 M^{4}}$	$\begin{aligned} & \operatorname{tr}\left(\left[P^{\mu}, U_{H L} U_{L H}\right]\left[P_{\mu}, U_{H}\right]\right) \\ & \rightarrow\left[P^{\mu}, U_{\phi \Phi}^{\dagger a} U_{\phi \Phi}^{b}\right]\left[P_{\mu}, U_{\Phi}^{b a}\right] \supset-24 \kappa^{2} \eta \mathcal{O}_{H} \end{aligned}$
$-i c_{s} 4 \mathcal{I}\left[q^{2}\right]_{i 0}^{23}=\frac{c_{s}}{16 \pi^{2}} \frac{1}{M^{4}}\left(-\frac{5}{2}+\log \frac{M^{2}}{\mu^{2}}\right)$	$\begin{aligned} & \operatorname{tr}\left(\left[P^{\mu}, U_{L H}\right]\left[P_{\mu}, U_{H L}\right] U_{L}\right) \\ & \rightarrow\left[P^{\mu}, U_{\phi \Phi}^{a} \phi\left[P_{\mu}, U_{\phi \Phi}^{\dagger a}\right] U_{\phi}\right. \\ & \quad \supset 2 \kappa^{2}\left[\left(\frac{\kappa^{2}}{M^{2}}-2 \lambda\right) \mathcal{O}_{T}-\frac{\kappa^{2}}{M^{2}} \mathcal{O}_{H}\right. \\ & \left.\quad+\left(\frac{\kappa^{2}}{M^{2}}-10 \lambda\right) \mathcal{O}_{R}\right] \\ & \hline \end{aligned}$
$-i c_{s} 2\left(\mathcal{I}\left[q^{2}\right]_{i 0}^{14}+\mathcal{I}\left[q^{2}\right]_{i 0}^{23}\right)=\frac{c_{s}}{16 \pi^{2}}\left(-\frac{1}{2 M^{4}}\right)$	$\begin{gathered} \operatorname{tr}\left(\left[P^{\mu}, U_{L H} U_{H L}\right]\left[P_{\mu}, U_{L}\right]\right) \\ \rightarrow\left[P^{\mu}, U_{\phi \Phi}^{a} U_{\phi \Phi}^{\dagger a}\right]\left[P_{\mu}, U_{\phi}\right] \\ \supset 4 \kappa^{2}\left[\left(-\frac{\kappa^{2}}{M^{2}}+2 \lambda\right) \mathcal{O}_{T}\right. \\ \left.\quad-10 \lambda \mathcal{O}_{H}-\frac{2 \kappa^{2}}{M^{2}} \mathcal{O}_{R}\right] \\ \hline \end{gathered}$
$-i c_{s}\left(2 \mathcal{I}\left[q^{2}\right]_{i 0}^{24}+4 \mathcal{I}\left[q^{2}\right]_{i 0}^{33}\right)=\frac{c_{s}}{16 \pi^{2}} \frac{1}{M^{6}}$	$\begin{aligned} & \operatorname{tr}\left(\left[P^{\mu}, U_{H L L}\right]\left[P_{\mu}, U_{L H}\right] U_{H L} U_{L H}\right) \\ & \rightarrow\left[P^{\mu}, U_{\phi \Phi}^{\dagger a}\right]\left[P_{\mu}, U_{\phi \Phi}^{b}\right] U_{\phi \Phi}^{\dagger b} U_{\phi \Phi}^{a} \supset-12 \kappa^{4} \mathcal{O}_{R} \end{aligned}$
$-i c_{s}\left(2 \mathcal{I}\left[q^{2}\right]_{i 0}^{42}+4 \mathcal{I}\left[q^{2}\right]_{i 0}^{33}\right)=\frac{c_{s}}{16 \pi^{2}} \frac{1}{M^{6}}\left(\frac{17}{6}-\log \frac{M^{2}}{\mu^{2}}\right)$	$\begin{aligned} & \operatorname{tr}\left(\left[P^{\mu}, U_{L H}\right]\left[P_{\mu}, U_{H L}\right] U_{L H} U_{H L}\right) \\ & \rightarrow\left[P^{\mu}, U_{\phi \Phi}^{a}\right]\left[P_{\mu}, U_{\phi \Phi}^{\dagger a}\right] U_{\phi \Phi}^{b} U_{\phi \Phi}^{\dagger b} \\ & \quad \supset-2 \kappa^{4}\left(\mathcal{O}_{H}+4 \mathcal{O}_{R}\right) \end{aligned}$
$-i c_{s}\left(\mathcal{I}\left[q^{2}\right]_{i 0}^{42}+\mathcal{I}\left[q^{2}\right]_{i 0}^{24}+2 \mathcal{I}\left[q^{2}\right]_{i 0}^{33}\right)=\frac{c_{s}}{16 \pi^{2}} \frac{5}{12 M^{6}}$	$\begin{aligned} & \operatorname{tr}\left(\left[P^{\mu}, U_{H L}\right] U_{L H}\left[P_{\mu}, U_{H L}\right] U_{L H}\right. \\ & \left.\quad+U_{H L}\left[P^{\mu}, U_{L H}\right] U_{H L}\left[P_{\mu}, U_{L H}\right]\right) \\ & \rightarrow\left[P^{\mu}, U_{\phi \Phi}^{\dagger a}\right]_{\phi \Phi}^{b}\left[P_{\mu}, U_{\phi \Phi}^{\dagger b}\right] U_{\phi \Phi}^{a} \\ & \quad+U_{\phi \Phi}^{\dagger a}\left[P^{\mu}, U_{\phi \Phi}^{\phi}\right] U_{\phi \Phi}^{\dagger b}\left[P_{\mu}, U_{\phi \Phi}^{a}\right] \\ & \\ & \quad \supset 4 \kappa^{4}\left(-5 \mathcal{O}_{H}+4 \mathcal{O}_{R}\right) \end{aligned}$

Example:
 Integrating out a scalar triplet (scalar sector)

- Final result (add up all terms):

$$
\begin{array}{r}
\mathcal{L}_{\mathrm{EFT}}^{1 \text {-lop }}[\phi] \supset \frac{1}{16 \pi^{2}} \frac{3 \kappa^{2}}{2 M^{2}}\left|D_{\mu} \phi\right|^{2}+\frac{1}{16 \pi^{2}} \frac{\kappa^{2}}{M^{4}}\left[\left(\frac{\kappa^{2}}{2 M^{2}}-8 \eta+3 \lambda\right) \mathcal{O}_{T}\right. \\
\left.\quad+\left(-\frac{9 \kappa^{2}}{2 M^{2}}-6 \eta+10 \lambda\right) \mathcal{O}_{H}+\left(-\frac{21 \kappa^{2}}{2 M^{2}}-21 \eta+25 \lambda\right) \mathcal{O}_{R}\right]
\end{array}
$$

" in agreement with earlier calculations with Feynman diagrams (F. del Aguila, Z. Kunszt, J. Santiago, 1602.00126) and different functional methods (B. Henning, X. Lu, H. Murayama, 1604.01019; S. Ellis, J. Quevillon, T. You, ZZ, 1604.02445).

Example:
 Integrating out a scalar tripleł (gauge sector)

- Extended quadratic pieces:
$\mathcal{L}_{\mathrm{UV} \text {, quad. }} \supset-\frac{1}{2}\left(\Phi^{\prime a} \phi^{\prime \dagger} \tilde{\phi}^{\prime \dagger} W_{\alpha}^{\prime a} B_{\alpha}^{\prime}\right)\left(-P^{2}+\mathbf{M}^{2}+\mathbf{U}+P_{\mu} \mathbf{Z}^{\mu}+\mathbf{Z}^{\dagger \mu} P_{\mu}\right)$
where

$$
\begin{aligned}
\mathbf{M}^{2} & =\operatorname{diag}\left(M^{2}, m^{2}, m^{2}, 0,0\right) \\
\mathbf{U} & =\left(\begin{array}{cc}
U_{H} & \left(U_{H L}\right)_{1 \times 4} \\
\left(U_{L H}\right)_{4 \times 1} & \left(U_{L}\right)_{4 \times 4}
\end{array}\right)=\left(\begin{array}{cccc}
U_{\Phi}^{a b} & \left(U_{\phi \Phi}^{\dagger \dagger}\right)_{1 \times 2} & U_{\Phi W}^{a b \beta} & 0 \\
\left(U_{\phi \Phi}^{b}\right)_{2 \times 1} & \left(U_{\phi}\right)_{2 \times 2} & \left(U_{\phi W}^{b \beta}\right)_{2 \times 1} & \left(U_{\phi B}^{\beta}\right)_{2 \times 1} \\
U_{\Phi W}^{\dagger a b \alpha} & \left(U_{\phi W}^{\dagger a \alpha}\right)_{1 \times 2} & U_{W}^{a b \alpha \beta} & U_{B W}^{a \alpha \beta} \\
0 & \left(U_{\phi B}^{\dagger \alpha}\right)_{1 \times 2} & U_{B W}^{b \alpha \beta} & U_{B}^{\alpha \beta \beta}
\end{array}\right), \\
\mathbf{Z}^{\mu} & =\left(\begin{array}{cccc}
Z_{H}^{\mu} & \left(Z_{H L}^{\mu}\right)_{1 \times 4} \\
\left(Z_{L H}^{\mu}\right)_{4 \times 1} & \left(Z_{L}^{\mu}\right)_{4 \times 4}
\end{array}\right)=\left(\begin{array}{cccc}
0 & \mathbf{0}_{1 \times 2} & Z_{\Phi W W}^{\mu a b \beta} & 0 \\
\mathbf{0}_{2 \times 1} & \mathbf{0}_{2 \times 2} & \left(Z_{\phi W}^{\mu b \beta}\right)_{2 \times 1} & \left(Z_{\phi B}^{\mu \beta}\right)_{2 \times 1} \\
0 & \mathbf{0}_{1 \times 2} & 0 & 0 \\
0 & \mathbf{0}_{1 \times 2} & 0 & 0
\end{array}\right)
\end{aligned}
$$

Example:
 Integrating out a scalar tripleł (gauge sector)

$$
\begin{aligned}
& Z_{\Phi W}^{\mu a b \beta}=g^{\mu \beta} i g \epsilon^{a d b} \Phi_{\mathrm{c}}^{d} \sim \mathcal{O}\left(g \phi^{2}, g P^{2} \phi^{2}, g \phi^{4}, \ldots\right), \quad U_{\Phi W}=\left[P_{\mu}, Z_{\Phi W}^{\mu}\right], \\
& Z_{\phi W}^{\mu b \beta}=-g^{\mu \beta} \frac{g}{2}\binom{\sigma^{b} \phi}{\sigma^{b} \tilde{\phi}} \sim \mathcal{O}(g \phi), \quad U_{\phi W}=\left[P_{\mu}, Z_{\phi W}^{\mu}\right], \\
& Z_{\phi B}^{\mu \beta}=-g^{\mu \beta} \frac{g^{\prime}}{2}\binom{\phi}{-\tilde{\phi}} \sim \mathcal{O}\left(g^{\prime} \phi\right), \quad U_{\phi B}=\left[P_{\mu}, Z_{\phi B}^{\mu}\right] .
\end{aligned}
$$

- Calculate diagrams like

$$
\underbrace{\prime \cdots}=-i c_{s} \mathcal{I}\left[q^{2}\right]_{i 0}^{11} \operatorname{tr}\left(Z_{H L}^{\mu} Z_{H L \mu}^{\dagger}\right)=\frac{c_{s}}{16 \pi^{2}}\left(\frac{3}{8}-\frac{1}{4} \log \frac{M^{2}}{\mu^{2}}\right) M^{2} \operatorname{tr}\left(Z_{H L}^{\mu} Z_{H L \mu}^{\dagger}\right)
$$

- Final result:

$$
\mathcal{L}_{\mathrm{EFT}}^{1 \text {-loop }}[\phi] \supset \frac{1}{16 \pi^{2}} \frac{5 \kappa^{2}}{8 M^{4}}\left[g^{2} \mathcal{O}_{T}+g^{\prime 2} \mathcal{O}_{H}-\left(4 g^{2}+2 g^{\prime 2}\right) \mathcal{O}_{R}\right]
$$

- First time this has been calculated with functional methods!
- In agreement with earlier calculation with Feynman diagrams (F. del Aguila, Z. Kunszt, J. Santiago, 1602.00126).

Example:

threshold matching of gauge coupling (fermion case)

- Integrate out a vector-like fermion of mass M, and extract $P^{4} \sim D^{4} \sim G^{2}$ terms in the EFT.

- Gamma matrix algebra + plug in master integrals =>

$$
\begin{aligned}
& \frac{c_{s}}{16 \pi^{2}} \frac{2}{3} \log \frac{M^{2}}{\mu^{2}} \operatorname{tr}\left(P^{\mu} P^{\nu} P_{\mu} P_{\nu}\right) \subset-\frac{1}{16 \pi^{2}} \frac{1}{3} \log \frac{M^{2}}{\mu^{2}} \operatorname{tr}\left(\left[P^{\mu}, P^{\nu}\right]\left[P_{\mu}, P_{\nu}\right]\right) \\
& =-\frac{g^{2}}{16 \pi^{2}} \frac{4}{3} \log \frac{M^{2}}{\mu^{2}}\left[-\frac{1}{4} \operatorname{tr}\left(G^{\mu \nu} G_{\mu \nu}\right)\right] \Rightarrow \frac{g_{\mathrm{eff}}^{2}(\mu)}{g^{2}(\mu)}=1+\frac{g^{2}}{16 \pi^{2}} T(R) \cdot \frac{4}{3} \log \frac{M^{2}}{\mu^{2}}
\end{aligned}
$$

More examples...

 can be found in 1610.00710 and my upcoming paper(s)- General recipe for one-loop matching:
- Extract quadratic pieces of the UV theory Lagrangian.
- Draw covariant diagrams and read off their expressions.
- Add them up to obtain the EFT Lagrangian.
- See Section 3.5 of 1610.00710 for detailed recipe.

Summary

- EFT matching can be done in more elegant and simpler ways than using conventional Feynman diagrams.
- Covariant diagrams keep track of one-loop functional matching calculations, which
- preserve gauge covariance in intermediate steps,
- allow universal results (master formulas) to be easily derived,
- can deal with additional structures in straightforward ways,
" you can use as soon as you have learned the (simple) rules!

The end

Feel the power!

Thank you for your attention!

