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“Field theories”

One can define a quantum theory (and in particular, a quantum
field theory) abstractly by giving a Hilbert space of states

|i〉 ∈ H (1)

operators in this Hilbert space

O |i〉 = |j〉 (2)

and a prescription for computing inner products of states in the
Hilbert space

〈i|j〉 = cij ∈ C . (3)

(Typically some additional conditions: unitarity, existence of one
stress tensor, . . . )
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Lagrangian field theories
A subclass of such theories are given by Lagrangian quantum field
theories. They are theories in which H, O and 〈i|j〉 can be defined
in terms of a path integral. For instance, correlation functions of
operators can be defined in terms of the partition function

ZΛ[J(x)] =

∫
Λ

[DΦ] exp

(
−
∫

d4xLΛ(Φ(x), ∂Φ(x), . . . , J(x))

)
(4)

with L a function from Φ(x), J(x) to the real numbers. Here Φ
stands for the set of fields in the theory (maps from spacetime1 to
R,C or Grassmann numbers), and J(x) is an “external source”,
useful when computing correlators.

Two comments
Not every QFT is necessarily Lagrangian.
Being “non-Lagrangian” is often a time-dependent statement.

1I will always consider Lorentz-invariant QFTs.
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Conformal (quantum) field theories

We are familiar with the previous, abstract presentation of QFTs in
the case in which the system has conformal symmetry. This is a
natural symmetry to consider: as we go to the deep IR the resulting
theory may be non-trivial, and will be scale-invariant. It is
conjectured that for unitary 4d QFTs scale invariance implies
conformal invariance. That is, the theory is invariant under the
group of transformations preserving the angle

x · y√
(x · x)(y · y)

. (5)

This larger (than Lorentz) symmetry group constrains the
properties of the theory in useful ways.
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Universality

Particularly useful is the notion of universality: a given CFT may
arise as the IR limit of a number of different QFTs.

In the literature on 4d N = 1 field theories, such universality goes
under the name “Seiberg duality”.

Again “non-Lagrangian” becomes somewhat ill-defined: it just
means that we have not found a Lagrangian QFT flowing to the
CFT yet.

(But, as I will explain, one can show that there is no N = 3
Lagrangian theory flowing to the N = 3 SCFTs we construct. It is
in this sense that the theories that we construct are known to be
non-Lagrangian.)
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“N = 3”

In four dimensions, though, conformal invariance by itself is not
very constraining. We obtain a more tractable class of theories if
we also assume supersymmetry: a symmetry of the theory with
generators Q such that

Q |a〉 = |b〉 (6)

and spin(|b〉) = spin(|a〉)± 1
2 .

The ways of constructing such Q compatible with Lorentz
symmetry can be classified [Haag, Lopuszanski and Sohnius], with the
result that the Qi must be spinors of the Lorentz group Spin(3, 1).

We say that we have N = k supersymmetry if there are k distinct such
minimal spinors. In 4d, a minimal spinor is Majorana ∼=4d Weyl, with four
components. So in 4d, we have 4k distinct supercharges.
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Simplifications due to supersymmetry

Increasing N helps, since for supersymmetric theories
Loops corrections to certain couplings tend to cancel.
Non-perturbative corrections are also constrained.

. . . but we cannot increase N indefinitely, since there are bounds
on the existence of SCFTs with N > Nmax.[Nahm ’78], [Córdova,
Dumitrescu, Intriligator ’16].

In four dimensions Nmax = 4.

(Of course, increasing N makes the theories increasingly unrealistic, but
let’s not worry about that today.)
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N = 4 SYM theory in four dimensions
This theory has 16 supercharges. No classification is known, but all
N = 4 theories which are known are Lagrangian (Yang-Mills), and
can be specified by giving a gauge group G, a complexified coupling
τ = θ + i/g2, and some extra discrete choices L for the dyonic
and magnetic line operators [Aharony, Seiberg, Tachikawa]:

L =
1

g2
Tr(F ∧ ?F ) + θTr(F ∧ F ) + . . . (7)

This description is nevertheless overcomplete, due to the existence of
Montonen-Olive duality:

T (G, τ,L ) = T (LG,− 1

nGτ
,L ′) (8)

and the classical τ → τ + 1 symmetry. LG is the Langlands dual to G:

{U(N), SU(N), SO(2N), SO(2N + 1), . . .} L−→
{U(N), SU(N)/ZN , SO(2N), USp(2N), . . .} (9)
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Duality in N = 4

In this representation τ → −1/τ is u→ −u.

u = 1+iτ
i+τ

|j(τ)|
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N = 3 SCFTs

Many examples of N = 0, 1, 2 CFTs are known, both Lagrangian
and non-Lagrangian. But no N = 3 SCFT (which was not N = 4)
was known until our work.2 In fact, they were widely thought not
to exist! (This is also what I though until last year.)

Theorem: Every non-gravitational CPT-invariant N = 3 is
automatically N = 4.

Minimal N = 3 multiplet: {Aµ(+1), 3λ(+1
2), 3φ(0), λ(−1

2)}. Its
CPT-conjugate changes the helicities, completing the content into
a N = 4 multiplet.

2N = 3 supergravities were known for a long time, but no N = 3 examples
without gravity were known, aside from the holographic dual of the N = 6

AdS5 compactification in [Ferrara, Porrati, Zaffaroni ’98].
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“Four dimensional”

We are after a theory in four dimensions which, if it exists, has no
semi-classical limit compatible with the N = 3 symmetry.

It turns out that the most robust way of
constructing the 4d N = 3 theories is by
using string theory techniques in 10 and
11d.

In our first (“AN ”) class of N = 3
theories we will construct a string
setting in 10d with a topological defect.
On the core of this defect we will have a
four dimensional theory coupled to 10d
supergravity. In the IR the 10d
supergravity decouples, leaving the 4d
theory we are after.
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IIB string theory
A good setting for our purposes is IIB string theory (described by
type IIB supergravity at low energies). It contains certain
supergravity defects (“D3-branes”) where N = 4 four dimensional
U(N) SYM lives.

Furthermore, it has a scalar field τ10d, whose restriction to the D3s
gives the τ = θ + i/g2 in the N = 4 Lagrangian.

Montonen-Olive duality on the low energy theory on the D3s

T (U(N), τ) = T
(
U(N),−1

τ

)
(10)

extends to the full 10d string theory:

IIB(N D3s, τ10d) = IIB
(
N D3s, − 1

τ10d

)
(11)
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N = 4 quotient perspective
We want to reduce N = 4→ N = 3. It turns out that this is
possible, by taking an appropriate gauging of a symmetry of the
N = 4 theory.

We start from the observation that for particular (self-dual) values
of τYM , certain Zk subgroups of the SL(2,Z) duality become
symmetries. For instance, when τ = i we have that S-duality

S =

(
0 −1
1 0

)
(12)

becomes a symmetry of the theory. (−i−1 = i.)

We can then construct appropriate quotients

Qk =
N = 4 U(N)

ZRk · Z
SL(2,Z)
k

. (13)

We choose ZRk appropriately to preserve 12 supercharges.
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Supersymmetry

These theories preserve (just) 12 supercharges for k > 2.
[I.G.-E., Regalado ’15]

The transformation of the supercharge generators under a SL(2,Z)
transformation in the Zk symmetry group is [Kapustin, Witten ’06]

QA → γ
1
2

k Q
A with γk =

|cτ + d|
cτ + d

. (14)

Under a U(1) ⊂ SU(4)R rotation the supercharges transform as

(Q1, Q2, Q3, Q4)→ (ω
1
2Q1, ω

1
2Q2, ω

1
2Q3, ω−

3
2Q4) . (15)

We take ω = γ−1k , so QA with A = 1, 2, 3 survive the quotient. (For Z4:
gSL(2,Z) = S, τ = i, so γ4 = −i, while ω4 = i.) (Notice that for k = 1, 2
we preserve N = 4.)
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F-theory viewpoint: Probing rigid singularities

From a string theory point of view, we will be interested in
understanding the four dimensional physics coming from (probe D3
branes on) F-theory compactifications in the presence of
singularities that do no admit supersymmetric smoothings. I.e. they
cannot be resolved or deformed into a smooth space without
spending energy.

Complex codimension 4 Calabi-Yau singularity in a geometry
with a F-theory limit. There are many such geometries, and
we will only scratch the surface.
Simplest case: Zk orbifolds of C3 × T 2, with non-trivial T 2

action and isolated fixed points.

(Such orbifolds have appeared for two-folds [Dasgupta, Mukhi ’96]
and threefolds [Witten ’96], but these cases admit deformations.)
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Generalizing the O3 plane

Calabi-Yau fourfolds of the form (C3 × T 2)/Zk can be classified
completely: the orbifold actions preserving susy were classified in
[Morrison, Stevens ’84], [Anno ’03], [Font, López ’04]. We focus on the
cases preserving at least 12 supercharges.

In the F-theory limit, adding D3 brane probes:

k = 1 gives IIB string theory → 4d U(N) N = 4 SYM.

k = 2 gives IIB w/ O3 plane → 4d N = 4 SYM w/ orthogonal or
symplectic groups. (Locally C4/Z2, so at least in some cases such
rigid singularities make perfect physical sense.)

k = 3, 4, 6 give IIB w/ exotic “OF3” plane → 4d N = 3 SCFTs.
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EYAWTK about the O3 plane
It will prove very illuminating to revisit the O3 plane (i.e.
(C3 × T 2)/Z2) from multiple viewpoints, since it is the simplest
case of a complex codimension four singularity with a F-theory lift,
and is relatively well understood.

Worldsheet CFT.
F/M-theory.
Holographic picture.
Field theory.
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Worldsheet description of the O3 plane
We start with IIB string theory on R10 = R4 × C3, and quotient by
I(−1)FLΩ. Here I acts as reflection on the C3:

I : (x, y, z)→ (−x,−y,−z) (16)

while (−1)FLΩ acts on the worlsheet. Its induced effect on the
spacetime fields is easily computed, for instance

(−1)FLΩ:

(
B2

C2

)
→
(
−B2

−C2

)
(17)

If we have a stack of N D3 branes we need to choose an action on
the Chan-Paton factors, which will project U(N) down to an
orthogonal or symplectic group:

O3− Õ3
−

O3+ Õ3
+

Last three are related by Montonen-Olive duality. [Witten ’98])
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−

O3+ Õ3
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F(M)-theory description of the O3 plane

IIB without orientifold is given by M-theory on T 2 in the
vol(T 2)→ 0 limit, we wish to quotient this by the lift of
I(−1)FLΩ.

The I action on the IIB coordinates lifts trivially to a I action on
six of the M-theory coordinates: (x, y, z)→ (−x,−y,−z).

The (−1)FLΩ action acts as

(−1)FLΩ:

(
B2

C2

)
→
(
−B2

−C2

)
(18)

which when rewritten in terms of C3 implies that

(−1)FLΩ: (p, q)→ (−p,−q) (19)

i.e. an inversion of the T 2: u→ −u. (Denoted by −1 ∈ SL(2,Z))
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F(M)-theory description of the O3 plane
Writing x, y, z, u for the C3 × T 2 coordinates
acted upon by the involution, we thus find

I(−1)FLΩ: (x, y, z, u)→ (−x,−y,−z,−u)

and the total geometry is (C3 × T 2)/Z2. This has
four fixed points at (x, y, z, u) = (0, 0, 0, p), with
p a fixed point of the T 2 under the Z2.

Various observations:
The involution exists for any value of τ .
Close to each fixed point we have C4/Z2: this cannot be
smoothed out in a CY way [Schlessinger ’71] [Morrison, Plesser
’98]. This agrees with the fact that the O3 has no light modes on it.
M2 branes probing C4/Zk: [Aharony, Bergman, Jafferis, Maldacena
’08].
Different O3 types: different discrete fluxes on the fixed points
[Hanany, Kol ’00].
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The involution exists for any value of τ .

Close to each fixed point we have C4/Z2: this cannot be
smoothed out in a CY way [Schlessinger ’71] [Morrison, Plesser
’98]. This agrees with the fact that the O3 has no light modes on it.
M2 branes probing C4/Zk: [Aharony, Bergman, Jafferis, Maldacena
’08].
Different O3 types: different discrete fluxes on the fixed points
[Hanany, Kol ’00].
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F(IIB)-theory description of the O3 plane
A holography appetizer

In IIB string theory the C3/I orbifold is non-supersymmetric, while
the O3 preserves 16 supercharges. I discuss the near horizon
geometry, AdS5 × (S5/Z2), which naively is non-supersymmetric.

From the M-theory picture, it is clear what is going on: near
horizon what we have is F-theory on AdS5 × ((S5 × T 2)/Z2), i.e. a
non-trivial SL(2,Z) bundle on the S5/Z2 horizon.

So we do not have the vanilla orbifold, but in addition it has a
non-trivial flat SL(2,Z) duality bundle on top, acting with
−1 ∈ SL(2,Z) as we go round the non-trivial one-cycle in the
S5/Z2 horizon manifold. One can check that the −1 ∈ SL(2,Z)
acting on the sugra spinors restores susy as expected.

The different kinds of orientifolds in this language are classified by
discrete flux: [H3], [F3] ∈ H3(S5/Z2, Z̃) = Z2. [Witten ’98]
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Field theory description of the quotient

A stack of N D3 branes in flat space gives 4d N = 4 U(N) SYM.

Rotations in the transverse R6 manifest themselves as the SU(4)R
R-symmetry group. Implies that I acts as −1 ∈ SO(6)R in the
field theory.

Similarly, IIB SL(2,Z) descends straightforwardly to the SL(2,Z)
duality group of the field theory. In particular

−1 ∈ SL(2,Z)IIB → −1 ∈ SL(2,Z)N=4 (20)

A generic element of SL(2,Z)N=4 is not a symmetry, but −1 is:
(−1)(τ) = −1·τ+0

0·τ−1 = τ .

So we can understand the orientifold projection as a quotient by a
particular symmetry of N = 4 U(N) SYM: U(N)/(ZR2 · Z

SL(2,Z)
2 ).

(In this language we also have a choice of Chan-Paton factors.)
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Recap and strategy
We have discussed four ways of viewing the action of an O3 plane
on a stack of D3 branes:

Worldsheet CFT: a projection of the CFT by I(−1)FLΩ, with
a choice of Chan-Paton factors.
M-theory: M2 branes probing (C3 × T 2)/Z2, with a choice of
discrete torsion on the fixed points.
IIB holography: An orbifold AdS5 × (S5/I) with a nontrivial
flat SL(2,Z) bundle, and choice of discrete [F ], [H] flux.

Field theory: A quotient of U(N) SYM by (ZR2 · Z
SL(2,Z)
2 ),

with a choice of Chan-Paton factors.

Strategy for generalization

Quotient by other possible symmetries of C3 × T 2, S5 or U(N).

The generalization of the CFT approach seems less obvious.
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“OF3” planes (“S-folds”) from M-theory
We start by considering the M-theory picture, given by Zk (k > 2)
quotients of C3 × T 2 leaving isolated fixed points. It turns out that
maximal supersymmetry (N = 3) is preserved for k = 3, 4, 6, with
action [Font, López ’04]

(x, y, z, u)→ (ωkx, ω
−1
k y, ωkz, ω

−1
k u) (21)

with ωk = exp(2πi/k). (These are known to be terminal Gorenstein
[Morrison, Stevens ’84].) We focus on these.

This action only maps the torus to itself for specific complex structures:

Z3: τ = e2πi/6

Three C/Z3 points.
Z4: τ = i

One Z2 and two Z4

points.

Z6: τ = e2πi/6

One Z6, one Z2 and
one Z3 point.
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Holographic perspective

There seems to be no obstruction to taking the F-theory limit, so
we end up with a IIB background of the form C3/Zk. Putting D3
branes on the singularity, and taking the near horizon limit, this
suggests a dual description for the field theories in terms of
AdS5 × (S5/Zk), with a non-trivial flat SL(2,Z) bundle. (A
realization of the setup proposed in [Ferrara,Porrati,Zaffaroni ’98].)

Remarkably, the axio-dilaton τ is frozen to a O(1) value in these
backgrounds. We learn that the theories on the branes no longer have
the marginal deformation associated to changing the Yang-Mills coupling.
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N = 4 quotient perspective
In terms purely of the theory on the probe branes, we start from the
observation that for particular (self-dual) values of τYM , certain Zk
subgroups of the SL(2,Z) become symmetries. For instance, when
τ = i we have that S-duality

S =

(
0 −1
1 0

)
(22)

becomes a symmetry of the theory. (−i−1 = i.)

We can then construct appropriate quotients

Qk =
N = 4 U(N)

ZRk · Z
SL(2,Z)
k

. (23)

We choose ZRk to be the R-symmetry generator associated with the
Zk rotation in the transverse R6, in order to preserve susy.
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Supersymmetry
We claim that these theories preserve (just) 12 supercharges for
k > 2. We now show this in the N = 4 SYM quotient perspective
(the computation from the other viewpoints is essentially
isomorphic). (Also in [Nishinaka, Tachikawa ’16].)

The 16 supercharges arrange into four spacetime spinors QAα , a spinor of
SU(4)R. Under the Zk rotation these transform as (ωk = exp(2πi/k))

(Q1, Q2, Q3, Q4)→ (ω
1
2

k Q
1, ω

1
2

k Q
2, ω

1
2

k Q
3, ω
− 3

2

k Q4) . (24)

The transformation of the supercharge generators under a SL(2,Z)
transformation is [Kapustin, Witten ’06]

QA → γ
1
2QA with γ =

|cτ + d|
cτ + d

. (25)

For the theories we are constructing, we have γ = ω−1k , so only QA with
A = 1, 2, 3 survive the quotient. (For Z4: gSL(2,Z) = S, τ = i, so
γ = −i, while ω4 = i.) (Notice that for k = 1, 2 we preserve N = 4.)
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Limitations of the IIB picture

The previous viewpoint is very illuminating, and is the cleanest
setup to argue for the existence of these theories.

But there are some bothersome limitations:
The field theory construction seems to apply also to E-type
N = 4 theories.3 But there is no known construction of
E-type theories from D3s.
Very little known about the analysis of D3s on these
singularities (both α′ and gs of order 1).

3Non-simply laced cases are more subtle, and D-type less subtle, so I will
discuss neither.
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M5 brane realization

In recent years there have been very important advances in the
study of four dimensional N = 2 SCFTs obtainable from
compactifying six dimensional (0, 2) theories on Riemann surfaces.
[Gaiotto ’09], . . .

I will now describe a realization of the OF3 N = 3 theories in these
terms, which should be helpful in studying their properties, and allows us
to construct new (“exceptional”) examples of N = 3 theories.

(Although for time reasons I will not explain the construction of the
N = 3 exceptional theories themselves.)
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M5 brane realization of the N = 4 theory

Start with N D3s on R4 × S1
T × R5. T-dualizing on S1

T and lifting
to M-theory gives N M5s on

R4 × S̃1
T × S1

M × R5 , (26)

the familiar realization of U(N) SYM as the low-energy limit of the
(0, 2) AN−1 theory on T 2.

We want to track the action of the N = 3 Zk quotient in this
representation. I will do Z4 for simplicity, i.e. a quotient by

S =

(
0 −1
1 0

)
(27)

times the corresponding SU(4)R rotation.
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M5 brane realization of the Z4 N = 3 theory
S-duality generator

The easiest part is the S-duality part. T-dualizing on a circle:

rIIA = r−1
IIB ; gIIA =

gIIB
rIIB

= gIIBrIIA . (28)

The uplift to M-theory is then given by

RM = g
2
3
IIA =

(
gIIB
rIIB

) 2
3

; RT̃ =
rIIA√
RM

=

(
rIIB
gIIB

) 1
3 1

rIIB
=

1

g
1
3
IIBr

2
3
IIB

so we have
RM
RT̃

= gIIB (29)

which extends to the familiar

τT̃M = C0 +
i

gs
. (30)
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M5 brane realization of the Z4 N = 3 theory
The compactification of S1

T breaks SO(6) ⊃ SO(5), and in
particular the Z4 ⊂ SO(6) we need is no longer a symmetry. We fix
this by compactifying an extra circle, i.e. we start with N D3s on

R4 × S1
T × S1

E × R4 (31)

breaking further (generically) the transverse rotation group to
SO(4) ⊂ SO(6).

If we choose τTE = i (which implies R(S1
T ) = R(S1

E)) we get an
enhancement to SO(4)× Z4 6⊂ SO(5), with generator

(xE , xT )→ (−xT , xE) (32)

or in terms of the complex structure of the S1
T × S1

E torus

τTE → −
1

τTE
. (33)
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M5 brane realization of the Z4 N = 3 theory

After T-duality on S1
T the action is no longer geometric: it acts on

S̃1
T × S1

E as

ZIIA
4 : ρT̃E → −

1

ρT̃E
. (34)

with
ρT̃E =

∫
T̃E

B + i vol(T̃E) . (35)

We can view this duality generator as a T-duality action along both
S1
T̃
and S1

E together with a π
2 rotation.
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M5 brane realization of the Z4 N = 3 theory

The uplift of the Z4 R-symmetry generator to M-theory is thus

ZR4 : ρM =

∫
T 3

C3 + iRERT̃RM → −
1

ρM
. (36)
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Moduli at the fixed point

In order to have a theory invariant under ZR4 we thus require

ρM = − 1

ρM
⇐⇒ ρM = i ⇐⇒ RERT̃RM = 1 . (37)

On the other hand, invariance under S-duality requires

τT̃M = − 1

τT̃M
⇐⇒ τT̃M = i ⇐⇒ RM = RT̃ . (38)

Together these leave a single modulus unfixed:

RM = RT̃ = R ; RE = R−2 . (39)

The four dimensional limit is obtained whenever ρTE → i∞, which
maps to R→ 0.
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The N = 3 quotient
In summary: the N = 3 theories coming from S-folds (generalized
O3 planes) can be constructed by taking M5 branes on
R1,3 × (S1

M × S1
T̃
× S1

E × C2)/Zk, with

Zk = ZRk · Zτk · Z̃Rk . (40)
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The N = 3 quotient
In summary: the N = 3 theories coming from S-folds (generalized
O3 planes) can be constructed by taking M5 branes on
R1,3 × (S1

M × S1
T̃
× S1

E × C2)/Zk, with

Zk = ZRk · Zτk · Z̃Rk . (40)

ZRk is an ordinary Zk rotation on C2 generated by

ω̂Rk =

(
ω−1
k 0
0 ωk

)
(41)

with (ωk)
k = 1. This is an element of the manifest

SO(4)R ⊂ SO(5)R in the ordinary construction.
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The N = 3 quotient
In summary: the N = 3 theories coming from S-folds (generalized
O3 planes) can be constructed by taking M5 branes on
R1,3 × (S1

M × S1
T̃
× S1

E × C2)/Zk, with

Zk = ZRk · Zτk · Z̃Rk . (40)

Zτk is an ordinary SL(2,Z) transformation action of the T 2 formed
by T̃ and the M-theory circle. I.e. the T 2 wrapped by the M5
stack, so this element maps to the corresponding SL(2,Z) duality
generator in N = 4 SYM.
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The N = 3 quotient
In summary: the N = 3 theories coming from S-folds (generalized
O3 planes) can be constructed by taking M5 branes on
R1,3 × (S1

M × S1
T̃
× S1

E × C2)/Zk, with

Zk = ZRk · Zτk · Z̃Rk . (40)

Z̃Rk is the non-geometric element sending

ρM →
aρM + bρM
cρM + dρM

(41)

for the appropriate SL(2,Z) transformation corresponding to the
Zk rotation. Recall that the O(2, 2;Z) T-duality group of type II
on T 2 can be written as

O(2, 2;Z) = (SL(2,Z)τ × SL(2,Z)ρ) o (Zτ↔ρ2 × Z(τ,ρ)↔(−τ ,−ρ)
2 ) .

(42)
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Duality on the M5 brane

This is a fairly exotic thing we are doing in terms of the M5:
We are compactifying a transverse direction, introducing a
breaking SO(5)× Z2 → SO(4)× Z2. For certain values of
this deformation of the M5 theory we have an enhancement
SO(4)× Z2 → SO(4)× Z4. (All this is a subgroup of the
SU(4)R → SO(6)R arising in the IR fixed point.)

The Z4 acts in a very exotic way, mixing degrees of freedom
along the M5 with transverse modes.
But by construction, we know the symmetry to be there.

I don’t have more to say about this at the moment, but it is clearly
very interesting: figuring the precise action of this Z4 on the AGT
[Alday, Gaiotto, Tachikawa ’09] theory on the M5 would, to a large
extent, solve these N = 3 theories.
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Supersymmetry

One can compute the number of preserved supercharges directly in
this picture. The full duality group of M-theory on T 3 is

SL(3,Z)× SL(2,Z)ρM (43)

of which we are taking elements in a SL(2,Z)τ × SL(2,Z)ρM
subgroup. Take the corresponding U(1) rotation subgroups inside
the respective tori. Then the supercharges preserved by the M5
transform as [Kumar, Vafa ’96]:

(S+
4 , S

+
4 )− 1

2 ,
1
2
⊕ (S+

4 , S
−
4 )− 1

2 ,−
1
2
⊕ (S−4 , S

+
4 ) 1

2 ,−
1
2
⊕ (S−4 , S

−
4 ) 1

2 ,
1
2

under
SO(1, 3)× SO(4)R × U(1)τ × U(1)ρM . (44)
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Supersymmetry
ZRk acts on the supercharges as

ZRk :

(•, S+
4 )p,q → (•, S+

4 )p,q
(•, (+1

2 ,−
1
2))p,q → e−2πi/k(•, (+1

2 ,−
1
2))p,q

(•, (−1
2 ,+

1
2))p,q → e2πi/k(•, (−1

2 ,+
1
2))p,q .

(45)

Under the non-geometric action Z̃Rk we find

Z̃Rk : (•, •)p,± 1
2
→ e±πi/k(•, •)p,± 1

2
(46)

where the bullets stand for omitted S±4 terms. Finally, under the
rotation of the torus wrapped by the M5 branes we find that

Zτk : (•, •)± 1
2
,q → e±πi/k(•, •)± 1

2
,q (47)

Under the combined action Zk = ZRk · Z̃Rk · Zτk, only twelve
supercharges remain invariant. So we have N = 3, as expected.
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Conclusions (OF3 realization)

We have constructed the first known examples of N = 3
SCFTs.
We do so by a very natural F-theoretical generalization of the
O3 plane, which freezes out the axio-dilaton, giving
intrinsically strongly coupled backgrounds.
The geometry involves rigid (neither deformable nor resolvable
in a Calabi-Yau way) singularities.
F-theoretical example of branes at singularities.
The SCFTs we find have natural holographic descriptions as
AdS5 ×X, where X is a non-trivial smooth F-theory
background with frozen axio-dilaton.
The M-theory picture suggests that upon compactification on
a circle we flow to N ≥ 6 ABJM theories.
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Conclusions (M5 brane realization)
I gave a different construction of the “classical” N = 3 theories
in terms of M5 branes wrapping a T 2 in M-theory. The
M-theory background is a U-manifold.
From the point of view of the M5 this seems like an interesting
generalization of the usual case considered in the literature
(M5 branes on Riemann surfaces). Something like an
asymmetric orbifold version of [Alday, Gaiotto, Tachikawa ’09].
Perhaps a useful viewpoint for probing N = 3 theories in more
detail.
A simple generalization of the construction (combining with the
U-manifold construction of 6d E-type (0, 2) theories in M-theory)
gives a new set of “exceptional” N = 3 theories.
More broadly, this is an interesting example of a SCFT which seems
to be most naturally (only?) described in terms of non-geometric
string backgrounds.

Non-geometric engineering of QFTs?
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Exceptional N = 3 theories

The previous construction is based on the six-dimensional A-type
(0, 2) theory. The D-type theories can be constructed similarly.
Can we generalize this to the E-type (0, 2) theories?

From field theory at least it seems like it should be possible. The
N = 4 theories with E6, E7, E8 gauge groups are self-dual under
SL(2,Z), so basically the same field theory intuition applies.

Non-simply laced cases are trickier:
Bn ↔ Cn
Duality for the N = 4 G2, F4 theories acts on the moduli
space too. [Argyres,Kapustin,Seiberg ’06]

But it should be interesting to understand precisely what happens
in these cases too. The construction here is a first step, which
should then be decorated with branch cuts for outer automorphisms
along the M5 worldvolume. [Vafa ’97], [Tachikawa ’11].
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Exceptional (0, 2) theories from M-theory
We need a way of realizing six-dimensional E-type (0, 2) theories
directly from M-theory. This is in fact not too hard, since we allow
ourselves to consider U-manifolds.

We start with the well known construction of (0, 2) E-type theories
in IIB. These appear for a C2/Ek singularity, for appropriate
choices of B-field. We embed this into a Weierstrass fibration. I
focus on the E7 case. A Weierstrass fibration that does the job is:

y2 = x3 + t3xz4 (48)

with [x : y : z] coordinates on P2,3,1, and t a coordinate on the C
base. This has a C2/E7 singularity at t = 0, constant j(τ) = i,
constant fiber volume, and a Z4 SL(2,Z) monodromy

M =

(
0 −1
1 0

)
=⇒ τ → −1

τ
. (49)
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Exceptional (0, 2) theories from M-theory

We can uplift this monodromy to M-theory, by T-dualizing along
one of the directions of the T 2:

IIB
τ → − 1

τ

↔ IIA
ρIIA → − 1

ρIIA

↔ M-theory
ρM → − 1

ρM

. (50)

The resulting space is a non-trivial U-manifold, and it is non-trivial
(for us!) to compute the preserved supersymmetry, moduli spaces,
etc.
Instead of attempting to do this, we use a trick: the original
Weierstrass fibration is birationally equivalent (keeping
c1(TX) = 0) to IIB on (C× T 2)/Z4, where the Z4 acts as a
simultaneous rotation on C and T 2.
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The birational transformation

(This generalizes: C2/{D4, E6, E7, E8} are birational to the
(C× T 2)/Zk quotients with k ∈ {2, 3, 4, 6}.)
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(This generalizes: C2/{D4, E6, E7, E8} are birational to the
(C× T 2)/Zk quotients with k ∈ {2, 3, 4, 6}.)



Exceptional N = 3 theories Classification

Exceptional (0, 2) theories from M-theory

Explicit dualization to M-theory is now easy. We obtain M-theory
on (C× T 3)/Zk, with the Zk acting non-geometrically on the T 3.

Note that, as opposed to the N = 3 action we constructed before,
this is a non-geometric action transverse to the (0, 2) theory.
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Preserved supersymmetry

We have M-theory on R1,5 × (C× T 3), so the supercharges
transform as(
S+

6 ,
1

2
,
1

2
,2

)
⊕
(
S+

6 ,−
1

2
,−1

2
,2

)
⊕
(
S−6 ,

1

2
,−1

2
,2

)
⊕
(
S−6 ,−

1

2
,
1

2
,2

)
under SO(1, 5)× U(1)C × U(1)ρ × SU(2), where

S±6 are the positive/negative chirality spinors in six dimensions.
U(1)C is the rotation group in C.
U(1)ρ × SU(2) is the maximal compact subgroup of the
(continuous version of the) duality group
SL(2,Z)ρ × SL(3,Z).
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Preserved supersymmetry

Under the geometric rotation in C:

ZC
p :

(
S+

6 ,±1
2 ,±

1
2 ,2
)
→ e±iπ/p

(
S+

6 ,±1
2 ,±

1
2 ,2
)(

S−6 ,±1
2 ,∓

1
2 ,2
)
→ e±iπ/p

(
S−6 ,±1

2 ,∓
1
2 ,2
)
.

(51)

On the other hand, under the non-geometric monodromy:

Zρp :

(
S+

6 ,±1
2 ,±

1
2 ,2
)
→ e±iπ/p

(
S+

6 ,±1
2 ,±

1
2 ,2
)(

S−6 ,±1
2 ,∓

1
2 ,2
)
→ e∓iπ/p

(
S−6 ,±1

2 ,∓
1
2 ,2
)
.

(52)

Clearly S−6 is preserved, while S+
6 is projected out. I.e. as expected

we end up with a (0, 2) theory in six dimensions.
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Superconformal limit

The superconformal 6d theory is obtained, in the IIB frame, when
the size of the fibered torus is sent to infinity. More precisely,
ρT 2 →∞ with τT 2 and τIIB held constant.

In terms of the M-theory data, this corresponds (for E7) to taking
the limit R→ 0 in

RA = R−2c−1 , RT = Rc−1 , RM = Rc2 , (53)

where c = (gIIB)
1
3 and RA, RT , RM are the radii of

T 3 = S1
A × S1

T × S1
M in the M-theory metric.

We again find a T 2 that contracts, and a normal direction that
decompactifies. But notice that these are directions normal to the
6d theory.
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Exceptional N = 3 theories

To construct exceptional N = 3 theories we combine both
quotients,4 i.e. we need to consider M-theory on

R4 × (T 5 × C)/(Zk × Zp) (54)

where the actions are non-geometric on the
T 5 = S1

a × S1
b × S1

c × S1
d × S1

e , and we will denote the different
subtori as T 2

ab = S1
a × S1

b , etc.

4Assuming that the birational transformation survives the N = 3 quotient.
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Exceptional N = 3 theories

E-type quotient: R1,3 × T 2
ab × (T 3

cde × C)/ZEp , where

ZEp = ZC
p · Zρp , (55)

S-fold quotient: R1,3 × (T 3
abc × T 2

de × C)/ZSk , where

ZSk = ZRk · Z̃Rk · Zτk . (56)
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Four dimensional limit

We can take a decoupling limit compatible with the orbifold
actions. For instance, for k = p = 4

Ra = Rb = Rd = Re = R , Rc = R−2 . (57)

The four dimensional theory is reached when R→ 0, where the 6d
(0, 2) theory becomes a SCFT, and the T 2 where it lives contracts
to zero size.

By an explicit embedding of the supersymmetry generators in the
duality group O(5, 5;Z), and using the formulas of [Kumar, Vafa
’96], we can compute that the combined action Zp × Zk preserves 12
supercharges.
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Some remarks

As discussed in [Kumar, Vafa ’96], if we compactify the
configuration above on an extra S1 (down to 3d), the U-duality
action above can be conjugated to an ordinary T-duality. I.e. the 3d
reduction of the new N = 3 theories can be understood as coming
from an asymmetric orbifold of IIA.
While both Zk and Zp can separately be dualized into a geometric
representation, I don’t know of a way of doing so for the combined
orbifold.
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Potential OF3 planes

From the M-theory perspective we can classify all possible D3
charges for OF3 planes.

Z2: τ arb.
Z⊕4

2

Z3: τ = e2πi/3

Z⊕3
3

Z4: τ = i
Z2 ⊕ Z⊕2

4

Z6: τ = e2πi/3

Z2 ⊕ Z3 ⊕ Z6

Around each C4/Zk fixed point we can turn on a discrete F4 flux
valued in H4(S7/Zk,Z) = Zk.
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Potential OF3 planes

From here we can compute the M2 charge around each fixed point.
If the torsion is trivial this comes just from curvature [Bergman,
Hirano ’09]

Q(OMk,0) = −χ(C4/Zk)

24
= − 1

24

(
k − 1

k

)
. (58)

The contribution from a p ∈ H4(S7/bZk,Z) flux gives an additional term
[Aharony, Hashimoto, Hirano, Ouyang ’09]

Q(OMk,p) = Q(OMk,0) +
p(k − p)

2k
. (59)
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Potential OF3 planes

Orientifold Charges

OF2 −1
4 , 0,

1
4 ,

1
2 ,

3
4

OF3 −1
3 , 0,

1
3 ,

2
3

OF4 −3
8 ,−

1
8 , 0,

1
8 ,

1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 ,

7
8

OF6 − 5
12 ,−

1
6 ,−

1
12 , 0,

1
6 ,

1
4 ,

1
3 ,

1
2 ,

7
12 ,

2
3 ,

5
6 ,

11
12

But notice!
Not all of these M-theory settings lift to non-trivial orientifolds in

IIB! [Aharony, Tachikawa ’16]
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Classification results

The proper classification was achieved by [Aharony, Tachikawa ’16].

H3(S5/Zk, (Z⊕ Z)ρ) =


Z2 ⊕ Z2 (k = 2)

Z3 (k = 3)

Z2 (k = 4)

Z1 (k = 6)

(60)

or alternatively, directly seeing which fluxes lift in F-theory to non-shift
orientifolds.
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