Lattice Field Theory

Stefan Schaefer for the NIC group

82nd PRC meeting, Zeuthen

Overview

Participation and leadership in two large European collaborations with rich QCD research programme

Currently particular interest in

ALPHA

 $\alpha_{\rm e}$

non-perturbative matching of heavy-light currents HQET

 $B
ightarrow \pi$ form factor

ETMC

structure functions

neutron EDM

 $(g-2)_{\mu}$

hadronic contributions to electroweak observables

Effects of the charm quark

NLO SU(2) ChPT constants

Different discretizations and analysis methods

```
ightarrow understanding of systematics
```

Highlights

In this presentation focus on three topics

ALPHA

Running coupling $\alpha_{\rm s}$

ETMC

Nucleon σ terms

Algorithms

Addressing the exponential signal-to-noise problem

Running coupling constant

Running coupling constant fundamental quantity in QCD analysis.

The ALPHA collaboration has developed a unique computational strategy.

Fully non-perturbative up to very high scales.

Use perturbation theory only where safe.

Unprecedented level of control of systematics.

Master formula: (simplified)

Running coupling constant

Non-perturbative running from hadronic scales up to 200 GeV.

Two different couplings

Schrödinger Functional

- small statistical errors at high energy
- small discretization effects
- two-loop perturbation theory known

Gradient Flow

- small statistical errors at low energy
- larger discretization effects
- only basic perturbation theory

Fritzsch, Ramos'13

ALPHA '90s

Running coupling

Use GF at strong coupling, SF at weak coupling.

 β function as a function of coupling constant.

Comparison to universal part of β function.

Scale setting

Leading the generation of the CLS $N_f = 2 + 1$ ensembles

Non-perturbatively improved Wilson fermions

5 small lattice spacings $a = 0.04 \, \text{fm}, \dots 0.08 \, \text{fm}$

Many quark masses to control chiral effects

Multi-purpose configurations used by researchers all over Europe

Denmark: Odense; Germany: DESY, Mainz, Münster, Regensburg, Wuppertal; Spain: Madrid; Italy: Milano, Rome; Ireland: Dublin; CERN

Key publications

Code and algorithmic setup: M. Lüscher, S.S. CPC 184 (2013) 519 Determination of the action: J. Bulava, S.S., NPB 874 (2013), 188 Description of the ensembles: Bruno et al, JHEP 1502 (2015) 043 Scale setting: M. Bruno, T. Korzec, S.S., arXiv:1608.08900

Scale setting

Dimensionful quantity to set the scale

$$f_{\pi\mathrm{K}}=rac{2}{3}(f_{\mathrm{K}}+rac{1}{2}f_{\pi})$$

Small chiral corrections along chosen trajectory

Small deviation from parameter free ChPT prediction

Running coupling constant

Conversion of Λ parameters: (with $m_c(m_c)$ and $m_b(m_b)$ from PDG)

 $\Lambda^{(3)}_{\overline{\rm MS}} = 332(14)~{MeV}~,~~\Lambda^{(4)}_{\overline{\rm MS}} = 289(14)~{MeV}~,~~\Lambda^{(5)}_{\overline{\rm MS}} = 207(11)~{MeV}$

Estimate of conversion error:

loops	α_n	$\alpha_n - \alpha_{n-1}$
2	0.11670	-
3	0.11771	0.00109
4	0.11787	0.00016
5 (β)	0.11794	0.0007

Prelimiary result

 $\alpha_{\overline{
m MS}}(m_Z) = 0.1179(10)(2)$

Summary: strong coupling constant

 $\alpha_s^{\overline{\mathrm{MS}}}(M_Z) = 0.1179(10)(2)$

Combination of many large parts

Running in Schrödinger Functional (with two couplings)

Precise renormalization constants (Z_A)

Scale setting on large volume CLS lattices

New quality of results with unprecedented control of systematics.

Many pieces published

Preliminary result presented at conferences

Perturbation theory misleading even at $\alpha = 0.2$.

Non-perturbative approach necessary.

Nucleon sigma term

Nucleon sigma terms

$$\sigma_{\pi N} = m_{ud} \langle N | ar{u} u + ar{d} d | N
angle \ \sigma_{
m s} = m_s \langle N | ar{s} s | N
angle$$

Strange content

$$y=rac{2\sigma_s}{\sigma_{\pi N}}=rac{2\langle N|ar{s}s|N
angle}{\langle N|ar{u}u+ar{d}d|N
angle}$$

- Mass fraction of the nucleon
- π -N scattering
- Search for BSM physics

Lattice determinations

Method I: Feynman-Hellmann theorem

$$\sigma_{\pi N} = m_{ud} rac{\partial}{\partial m_{ud}} m_N \Big|_{phys} pprox rac{1}{2} m_\pi rac{\partial}{\partial m_\pi} m_N$$

Pro

Simple observable

2pt functions

Con

Need many simulations with different quark masses

Take derivative numerically

Large steps in quark mass needed \rightarrow systematic error?

Example: BMWc

PRL 116 (2016)

$$\sigma_{\pi N} = 38(3)(3) \,{
m MeV}$$

Lattice determination

Method II: Direct evaluation

Pro

No derivative approx

Better systematics

3pt functions

Disconnected diagrams \rightarrow numerically challenging

ETMC computation

PRL 116 (2016) no.25, 252001

- $N_f=2$ twisted mass fermions with clover term
- $a=0.093\,{
 m fm}$, L/a=48

Physical pion mass

Results of ETMC computation

$$R(t_s, t_j) \equiv rac{C_{3pt}(t_s, t_j)}{C_{2pt}(t_s)}$$

$$\sigma_{\pi N} = 37.22(2.57) {+0.99 \choose -0.6} \,{
m MeV}$$
 $\sigma_s = 41.05(8.25) {+1.09 \choose -0.69} \,{
m MeV}$
 $\sigma_c = 79(21) {+2.1 \choose -1.3} \,{
m MeV}$

Different separation between nucleon source/sink

Variation as function of operator insertion \rightarrow look for plateau

Summary nucleon sigma term

Direct evaluation ETMC results agree with Feynman-Hellmann results.

Very different systematics \rightarrow good check.

Tension between phenomenological and lattice determinations.

Algorithms. Problem to solve

Majority of physics observables extracted from long-distance behavior of n-point functions

Generic problem!

Most notable exception: pion correlation functions.

Signal falling exponentially

$$egin{aligned} C_{\mathrm{N}}(x_0) &= \sum_{ec{x}} \langle N(x_0,ec{x}) ar{N}(0,0)
angle \ &= A \, e^{-m_{\mathrm{N}} x_0} \end{aligned}$$

Signal-to-noise ratio decreasing exponentially

$$rac{C_{
m N}(x_0)}{\delta C_{
m N}(x_0)} \propto e^{(m_{
m N}-rac{3}{2}m_\pi)x_0}$$

Parisi'82

Monte Carlo

$$\langle A
angle = rac{1}{Z} \int [dU] \, e^{-S[U]} A[U]$$

Standard Markov Chain Monte Carlo

Generate N field configurations U_1, U_2, \cdots, U_N

Compute observables $A[U_1], \cdots, A[U_N]$

Estimate of expectation value and its uncertainty

$$ar{A} = (rac{1}{N}\sum_i A[U_i]) \pm \delta ar{A} \qquad ext{with} \qquad \delta ar{A} = \sqrt{rac{ ext{var}(A)}{N}}$$

Strategies for improvement

Increase N, exponentially in the distance.

Find a better A
ightarrow variance reduction

Do something about the \sqrt{N} scaling. ightarrow Use locality of the theory.

Domain decomposition of lattice.

Active domains separated by boundary B.

$$\langle \{O(x) - \bar{O}\} \{O'(y) - \bar{O}'\} \rangle$$

= $\frac{1}{Z_B} \int [dU_B] e^{-S_B[U_B]} [\{O(x) - \bar{O}\}]_L(U_B) [\{O'(y) - \bar{O}'\}]_R(U_B)$

Estimate integrals over variables in L and R with N_1 configs per U_B

$$egin{aligned} & [O(x)]_L(U_B) = rac{1}{Z_L} \int [dU_L] e^{-S(U_B,U_L)} O(x) \ & [O(y)]_R(U_B) = rac{1}{Z_R} \int [dU_R] e^{-S(U_B,U_R)} O'(y) \end{aligned}$$

Multilevel

Start with set of N_0 level-0 gauge field configurations Used to define the fixed **boundary**.

 N_1 independent updates in region L and R.

 $N_0 imes N_1$ configurations on level 1.

Yields effectively $N_0 \times N_1^2$ configurations drawn from correct probability distribution.

Long tradition: Multihit (Parisi et al'83), Lüscher-Weisz'01,...

New: Methods for fermions

Multilevel for fermions

Need factorized observable and domain decomposed action

$$\langle P^{uu}(x)P^{dd}(y)
angle = rac{1}{Z}\int [dU] \mathrm{det}\, D\, e^{-S_g[U]}\mathrm{tr}ig[rac{1}{D_{m_u}}(x,x)\gamma_5ig]\mathrm{tr}ig[rac{1}{D_{m_d}}(y,y)\gamma_5ig]$$

Valence sector

Cè, Giusti, S.S., Phys.Rev. D93 (2016) 094507

Gluonic flow observables

García Vera, S.S., Phys.Rev. D93 (2016) 074502

Sea quarks

Cè, Giusti, S.S., arXiv:1609.02419

Building blocks for fermion observables in full QCD available. First extensive tests passed very successfully.

Example

Topological charge density correlation function

$$C_{qq}(x_0,y_0)=rac{1}{L^3}\langlear{q}(x_0)ar{q}_{(y_0)}
angle$$

with

$$ar{q}(x_0) = rac{1}{64\pi^2}\sum_{ec{x}}F^a_{\mu
u}(x) ilde{F}^a_{\mu
u}(x)$$

 $N_{
m f}=2$ dynamical flavors, $a=0.067~{
m fm}$ Reduction of simulation cost by a factor of n_1 up to $n_1=45$ confirmed.

Hadron physics

Hadronic spectrum and structure (Sigma terms, PDF, ...) Hadronic contribution to muon Anomalous Magnetic Moment Heavy Flavour physics (HQET, $B \to \pi$, $B_s \to K$ form factors) Non-pertrubative decoupling

Fundamental parameters

Strong coupling constant α_s Quark masses

Beyond QCD

Higgs-Yukawa model Large-N limit of SU(N) Turbulence

Algorithms

Integration methods (quasi-MC and polynomial exact methods) Variance reduction and multilevel methods Hamiltonian approach to field theory

Summary

Large diverse research programme

Good progress in many areas

 $\Lambda^{(3)}_{\overline{\rm MS}}$: new level of rigor reached

Nucleon σ terms with alternative method

 \rightarrow check of systematics

Algorithmic developments for next level of accuracy

 \rightarrow huge potential for baryon physics