

A combined Mimosa26 and **ATLAS FE-I4 test beam telescope** with parallel triggerless readout

M. Daas, T. Hemperek, T. Hirono, F. Hügging, J. Janssen, H. Krüger, D-L. Pohl, P. Wolf and N. Wermes

Physikalisches Institut der Universität Bonn

Physik bei höchsten Energien mit dem ATLAS-Experiment am LHC

daas@physik.uni-bonn.de

5th Beam Telescopes and Test Beams Workshop - Barcelona - 25.01.2017

- Test beam is tedious work
- Beam time is always scarce
- Many things can go wrong
- Parameter spaces get bigger
 - \rightarrow Gather more statistics in less time
 - \rightarrow Higher event rates
- → Fast readout
- Test beam areas can be narrow and difficult to access
- Remove as many independent parts as possible
- \rightarrow Compact setup

Our goals

- Good spatial resolution → Mimosa26 based telescope
- Good timing resolution \rightarrow ATLAS FE-I4 reference
- Reusing EUDET / AIDA hardware
- ROI support

universitätbonn ANEMONE - A Nice EUDET Mimosa Bonn Telescope

- 6 Mimosa26 planes for spatial resolution
- ATLAS FE-I4 timing reference plane
- Scintillator for FE-I4 triggering and track selection
 - Using TLU

- Trigger \rightarrow Rolling shutter readout of Mimosa26 planes
- One frame takes 115 µs
- Maximum rate: 1 trigger / 2 frames

- Trigger \rightarrow Rolling shutter readout of Mimosa26 planes
- One frame takes 115 µs
- Maximum rate: 1 trigger / 2 frames

- Continuous rolling shutter readout of Mimosa26
- Asynchronous ...
 - merging of frame n and frame n+1 data
 - matching of FE-I4 data to Mimosa26 data

- Continuous rolling shutter readout of Mimosa26
- Asynchronous ...
 - merging of frame n and frame n+1 data
 - matching of FE-I4 data to Mimosa26 data

7

- Continuous rolling shutter readout of Mimosa26
- Asynchronous ...
 - merging of frame n and frame n+1 data
 - matching of FE-I4 data to Mimosa26 data

- Continuous rolling shutter readout of Mimosa26
- Asynchronous ...
 - merging of frame n and frame n+1 data
 - matching of FE-I4 data to Mimosa26 data
- \rightarrow Enables readout at high rates

FE-I4 data

trigger 8

1

1

2

3

3

Pixel

Col , Row, Plane

x1, y1, 1

x2, y2, 2

x3, y3, 4

x4, y4, 5

x5, y5, 3

USBPix MMC3 Readout Board

- Custom-made PCB based on Enklustra Kintex7
- Combining readout of 6 Mimosa26 planes and FE-I4
- Includes Mimosa26 configuration (JTAG)
- ROI definition
- TCP/IP data transmission to DAQ PC
- Affordable (ca. 1500€)

- pyBAR (Bonn ATLAS Readout in Python)
 Fully integrated data acquisition framework
 - Integration of Mimosa26-, FE-I4- and TLU readout
 - Continuous data recording of all telescope planes
 - Compressed raw data storage
 - Open Source, available on GitHub

Online Monitor

- General status overview
- Online event building
- Online hit correlation
- Power supply status and control
- DUT status
- Also on GitHub

- Extensive testing at ELSA (Bonn Electron Stretcher Accelerator)
 - Dedicated test beam area for detector tests
 - Spacious and easily accessible
 - Complete infrastructure
 - Polarized electron beam up to 3.2 GeV
 - Full control over beam parameters

- Estimate systematic error of track reconstruction efficiency calculation
- Three runs at 11, 23 and 51 hits / frame
- ightarrow Ambiguous hits due to restricted spatial resolution of FE-I4 and fake tracks

- Estimate systematic error of track reconstruction efficiency calculation
- Three runs at 11, 23 and 51 hits / frame
- \rightarrow Ambiguous hits due to restricted spatial resolution of FE-I4 and fake tracks
- \rightarrow Define minimum track distance and discard ambiguous tracks

- USBPix MMC3 Readout Board
 - \rightarrow Alternative readout system for Mimosa26- and FE-I4-based telescopes
 - \rightarrow Very compact
 - \rightarrow Affordable
- Testing of ANEMONE with new readout
 - \rightarrow Good spatial resolution from Mimosa26 planes
 - \rightarrow Good timing resolution from ATLAS FE-I4 plane
 - \rightarrow Fast DAQ: 20 kHz (limited by TLU)
 - \rightarrow Online monitor including hit correlation

Thank You

Event selection:

- 1. BCID cut
 - Is the latency of the hit too large or too small → noise
- 2. Clustering
 - Can the individual hits be clustered?
- 3. Number of FE-I4 clusters
 - Ambiguous, if more than 1 cluster per trigger \rightarrow discard
- 4. Minimum track distance
 - Ambiguous, if two extrapolated tracks on FE-I4 plane are too close \rightarrow discard
- 5. 1σ residual cut
 - Remove all hits outside 1σ region of column and row residuals

universitätbonn Track reconstruction

- Estimate systematic error of track reconstruction efficiency calculation
- Three runs at 11, 23 and 51 hits / frame

