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ALPIDE and the Upgrade of the ALICE Inner Tracking System
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1. Introduc;on
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Beam pipe	

Fully equipped with Monolithic Ac;ve 
Pixel Sensors (MAPS)
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readout 

chip	

sensor	
thinned down 
to  50μm!	

12.5 G-pixel camera:


•  binary readout


•  ~10 m2 total area 


•  ~25000 chips
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ALPIDE
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1. Introduc;on


Features:




•  Dimension: 30mm x 15mm (1024 x 512 pixels)


•  Pixel pitch: 29μm x 27μm 

•  Thinned to 50μm (0.05% x/X0)  

•  Possibility to apply reverse bias voltage

•  Event-;me resolu;on 2-4 μs (charge collec;on 

;me only 1-30ns, but not exploited)

•  Very low power consump;on (40mW/cm2)      

no cooling needed in test beam setup


Key concepts:

•  In-pixel amplifica;on


•  In-pixel hit discrimina;on

•  In-pixel 3-level event memory

•  In-matrix zero-suppression	

•  Global shuier: triggered acquisi;on (up to 200kHz Pb-Pb or 
1MHz pp <-> ~6MHz/cm2 par;cle hit rate) or con;nuous 
(progr. integra;on ;me: 1μs – quasi ∞)


•  Binary readout

•  1.2 Gbit/s serial link, can drive up to 5m of cable

•  Two possible connec;on schemes: pads over the matrix and 

pads at the periphery









•  Produced in the TowerJazz 180nm 
CMOS Imaging Sensor (CIS) process


•  25μm epitaxial layer

•  Full CMOS within pixel matrix
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ALPIDE carrier card and DAQ board


BTTB5, 26/01/2016 
 J.W. van Hoorne, CERN
 7


2. ALPIDE telescope


ALPIDE carrier card:




•  Large opening underneath ALPIDE to reduce material budget

•  PCIe connector used as mechanical and electrical interface 

(with custom electrical protocol)

•  Small pads at periphery used for bonding


DAQ board:




•  USB-3.0 for connec;on to PC

•  PCIe connector for carrier card

•  Various GPIO connectors


•  ALPIDE telescopes typically consist of 7 planes, plane distance ~2cm

•  Central chip is typically treated as Device Under Test (DUT)




ALPIDE Telescopes
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2. ALPIDE telescope


Telescope 2
Telescope 1




ALPIDE Telescope
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telescope 2
telescope 1


6 GeV/c pions


•  ALPIDE telescopes successfully operated in various test beam facili;es all over the world (CERN 
PS, DESY, BTF Frasca;, Pohang/Korea, SLRI/Thailand)


•  Simulated track resolu;on at DUT around 2-3μm with 6GeV/c pions


•  Studied performance in terms of: detec;on efficiency, posi;on resolu;on, cluster sizes and 
shapes





trigger
trigger


2. ALPIDE telescope


Both telescopes 
installed in EA T10 
(CERN PS)




ALPIDE Telescope: Sorware
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2. ALPIDE telescope


•  DAQ using EUDAQ:




•  ALPIDE producer speciali;es:

•  Control of external equipment 

•  Automa;c reconfigura;on for errors

•  Online data consistency checking (absolute and rela;ve 

;mestamps as well as trigger ids)


•  Automa;on:

•  Genera;on of configura;on files

•  Changing configura;on files arer a certain number of events

•  Control of power supplies, pulser, linear and rotary stages

•  Watchdog sending texts and emails


•  Check EUDAQ control

•  Last event wriien

•  File size of current run

•  Out-of-sync


•  Like this about 1000 runs, each with a different setng (threshold, reverse  
bias, integra;on ;me, etc.), could be performed in 10 days without 
presence of shir crew


•  Analysis using EUTelescope




Telescope Op;mizer tool
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2. ALPIDE telescope


Nice online tool for op;mizing telescope setup



•  Variable parameters:


•  Plane posi;on

•  Material budget per plane

•  Resolu;on per plane

•  Par;cle type and momentum


•  Planes can be moved by mouse, results will be 
automa;cally updated


•  Tracks and measured points in planes can be 
simulated


•  One can also construct a setup by URL, see e.g. at 
boiom of this slide






•  Page: hip://mmager.web.cern.ch/mmager/telescope/

tracking.html

•  Source: hips://gitlab.cern.ch/mmager/telescope-

op;miser





h<p://mmager.web.cern.ch/mmager/telescope/tracking.html#part=e&p=1&x=[-10,-6,-4,-2,0,2,4,6,10]&XX0=[,
0.005,0.0005,0.0005,0.001,0.0005,0.0005,0.005,]&sy=[,
0.0005,0.0005,0.0005,0.0005,0.0005,0.0005,0.0005,]&en=[0,1,1,1,0,1,1,1,0]&ymc=[0,0,0,0,0,0,0,0,0]&ym=[0,0,0,0,0,0,0,0,0]&scaley
=0.0005	
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ALPIDE: Reverse bias dependence
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3. Selected results
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•  Detec;on efficiency stays at 100% - ε over wide range of thresholds

•  Chip-to-chip fluctua;ons negligible


•  Clear ordering: increasing performance with larger reverse bias

•  Most significant improvement from 0V to -1V


•  Extremely low fake-hit rate (Gaussian noise only 2-6 e-)

•  Below measurement limit of 10-11/pixel/event arer masking 10 pixels (1/50 000), only increased for -6V 


Detec;on efficiency and fake-hit rate

25μm epitaxial layer -> ~1600e- produced produce by MIP (MPV)            
-> then also charge sharing, Landau fluctua;ons to be considered..
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ALPIDE: Reverse bias dependence
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3. Selected results


Posi;on resolu;on and average cluster size


•  Posi;on resolu;on around desired 5μm in threshold range with detec;on efficiency > 99%

•  Biggest improvement from 0V to -1V

•  Liile dependence on reverse bias from -2V to -6V


•  Average cluster sizes vary between 1 and 3 pixels (for MIPs)




ALPIDE: Posi;on-resolved results
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3. Selected results


Cluster size and detec;on efficiency as func;on of the impinging point of the track within area of 
2x2 pixels 


•  for reverse bias of -3V, threshold of ~180e- (high for ALPIDE!), 6GeV/c pions


•  Cluster size strongly depending on impinging point: ~1 in pixel centers, ~4 in pixel corners

•  At higher thresholds, detec;on efficiency first starts to drop in pixel corners <-> almost equal 

charge sharing between 4 pixels




ALPIDE: Posi;on-resolved results
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3. Selected results


Cluster shapes as func;on of the impinging point of the track within area 
of 2x2 pixels 


•  for reverse bias of -3V, threshold of ~180e- (high for ALPIDE!), 6GeV/c pions


Shape:




Outline
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Summary
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4. Summary and future developments 


•  Successfully designed and operated a 7-plane beam telescope fully consis;ng of ALPIDE chips 


•  With 6GeV/c pions, a track resolu;on at the Device Under Test (DUT) of 2-3μm was reached


•  Setup highly automated: about 1000 runs, each with a different setng (threshold, reverse substrate 
bias, integra;on ;me, etc.), could be performed in 10 days without presence of a shir crew


•  ALPIDE is very suitable chip for beam telescopes


•  Can be thinned down to only 50μm (0.05%x/X0), making it suitable for high-resolu;on beam 
telescopes even at low beam energies


•  3cm x 1.5cm in size


•  Spa;al resolu;on of ~5μm


•  Event-;me resolu;on of <4μs (a single addi;onal plane with beier ;ming resolu;on could easily be 
added to improve this)


•  Global shuier architecture







Future developments
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4. Summary and future developments 


•  Hardware:

•  9-plane telescope with high-speed back plane


•  Plane distance of only 1cm

•  Using ITS Inner Barrel module readout topology with 9 1.2Gbit/s 

serial links 

•  Connected via firefly cable (up to 5m) to ITS Readout Unit (RU) 

prototype

•  RU connected via USB-3.0 to PC


•  Test beam with ITS modules


•  Sorware: 

•  Generalise EUDAQ producer to 


•  our other readout systems (including the Readout Unit)

•  cover both single chips and modules


•  Update our analysis code w.r.t. general EUTelescope developments


•  High precision measurements with different angles of beam 
incidence


•  First tries with summer student last summer, but desired track 
resolu;on not yet achieved 


•  Setup (plane distances) to be op;mized, go to SPS to reduce mul;ple 
scaiering


•  Analysis sorware
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BACKUP	



ALICE ITS pixel chip requirements
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2. ALPIDE


Parameter
 Inner Barrel
 Outer Barrel
 ALPIDE


Silicon thickness
 50μm
 ✔ 


Spa;al resolu;on
 5μm
 10μm
 ~5μm


Chip dimension
 15mm x 30mm
 ✔ 


Power density
 < 300mW/cm2
 < 100mW/cm2
 < 40mW/cm2


Event ;me resolu;on
 < 30μs
 ~2μs


Detec;on efficiency
 > 99%
 ✔ 


Fake hit rate
 < 10-5/event/pixel
 <<< 10-6/event/pixel


NIEL tolerance 
 1.7x1012 1MeV neq/cm2
 1011 1MeV neq/cm2
 >1.7x1013 1MeV neq/cm2


TID tolerance 
 270krad
 10krad
 >500krad


•  ALPIDE fulfills or surpasses pixel-chip requirements of the ALICE ITS upgrade


•  ALPIDE development represents significant advancement of MAPS regarding power density, fake-
hit rate, readout speed, and radia;on hardness




ALPIDE: Process technology
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1. Introduc;on


TowerJazz 180nm CMOS imaging sensor process:


•  High-resis;vity (>1kΩcm) p-type epitaxial layer 
(18μm-40μm) on p-type substrate (~10Ωcm) 


•  Deep p-well for full CMOS circuitry within the matrix 


•  Feature size 180nm and 6 metal layers è dense circuitry


Sensor only par;ally depleted è applica;on of moderate 
reverse bias VBB (<6V) possible via the substrate


p-well ︎

deep p-well ︎

epitaxial layer p-︎

n-well︎n-well︎
p++ ︎ p++ ︎ p++ ︎ p++ ︎n++ ︎ n++ ︎ n++ ︎n++ ︎

deep p-well ︎

p++ ︎

e
e

h
h

e
e

e
e

h
h

h
h

substrate p++ ︎

N-WELL ︎
DIODE︎

PMOS 
TRANSISTOR ︎

NMOS 
TRANSISTOR ︎

VRST︎

VBB︎ VBB︎ VDD︎  Signal from collec;on diode: ΔV ~ Q/C




•  par;cular focus put on low pixel-input 
capacitance C


è  values as low as 2fF achieved (signal of 
80mV for 1000e-)


Charge collec;on ;me: ~1-30ns


•  depending on size of deple;on zone 
(reverse substrate bias, collec;on diode 
geometry) 


metal 
stack ︎

drir	
diffusion	



3D and 2D view of 2x2 pixels
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2. ALPIDE


full CMOS circuitry within pixel matrix 	

ALPIDE in-pixel circuitry

•  Front-end: con;nuously ac;ve, power consump;on 40nW (9 transistors, full custom)


•  Mul;-event memory: 3 stages (62 transistors, full-custom)

•  Configura;on: masking and pulsing registers (31 transistors, full-custom)

•  Tes;ng: analog and digital test pulse circuitry (17 transistors, full-custom)

•  Matrix read-out: priority encoder, asynchronous, hit-driven




Q/C ra;o and sensor design parameters
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2. ALPIDE


Pixel and collec;on electrode 
geometry (not to scale): 


collec;on 
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surrounding 
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n-well
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Sensor performance mainly determined by: 


•  Pixel pitch


•  Collec;on n-well size


•  Spacing between the collec;on n-well and 
surrounding( deep) p-well 


•  Epitaxial layer thickness and resis;vity


•  Reverse bias voltage VBB on the collec;on diode


•  Sensor op;miza;on studies mainly by small-scale 
prototypes with analog readout


•  During design of ALPIDE, par;cular focus put on low 
pixel-input capacitance C


è  values as low as 2fF achieved (signal of 80mV for 1000e-)


Parameters selected for ALPIDE (29μm x 27μm pixel size): 


•  25μm epitaxial layer


•  2μm n-well diameter, 3μm spacing 


Ø  88% of pixel surface can be used for circuitry




Sensor op;miza;on – Pixel-input capacitance
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2. ALPIDE


Pixel input capacitance significantly decreased with increasing |VBB|


•  ~5fF for VBB=0V è ~2.5fF for VBB=-6V 


Epitaxial layer resis;vity


•  No influence in range between 1kΩcm and 7.5kΩcm with current pixel layout


Collec;on diode geometry


•  smaller collec;on n-well, larger spacing è smaller pixel input capacitance at 
large VBB


Collec;on diode geometries:	Epitaxial layer resis;vity	



Sensor op;miza;on – Epitaxial layer thickness
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2. ALPIDE


Prototypes produced on wafer with different epitaxial layer thickness and resis;vity


•  increasing epitaxial layer thickness:


•  generated charge (matrix signal) increases linearly


•  cluster size increases non-linearly


Op;mum epitaxial layer thickness depending on achievable deple;on volume 



è  depending on VBB and  geometry


seed pixel

nxn matrix


S
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Parameters selected for ALPIDE: 25μm epitaxial layer, 2μm n-well diameter, 3μm spacing 




ALPIDE: Floor plan 
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1. Introduc;on


1024 pixels / 3cm 	

512 pixels / 1.38 cm
 	

 0.12cm
 	

290μm 	

interface pads over 
matrix	

used for wire 
bonding on 

modules	

analogue biasing and 
digital interface circuitry	

pixel matrix 	

Features:

•  Dimension: 30mm x 15mm (1024 x 512 pixels)


•  Pixel pitch: 29μm x 27μm 

•  Thinned to 50μm or 100μm

•  Global shuier: triggered acquisi;on (up to 200 kHz Pb-Pb, 

1MHz pp) or con;nuous (progr. integra;on ;me: 1μs - ∞) 


Concepts:

•  In-pixel amplifica;on


•  In-pixel hit discrimina;on

•  In-pixel 3-level event memory

•  In-matrix zero-suppression	

interface pads at 
periphery	

used for wire 
bonding 

carrier cards	



ALPIDE: Front-end circuit 
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t1
 t2
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~2μs peaking ;me 


PI
X_

IN



t
t0


~1ms reset 


ΔV=Q/C: ~1-30ns 


par;cle hit


t
t1
 t2


VDDA


VSSA


pulse dura;on ~5-8μs 


Collec;on diode	 Amplifier-shaper	 Discriminator	

Front-end acts as delay line




•  Sensor and front-end con;nuously ac;ve


•  Upon par;cle hit front-end forms a pulse with peaking ;me of 2-4μs (<-> ;me walk)


•  charge collec;on ;me < 30ns! -> long pulse dura;on a choice made for ALICE ITS: func;oning as delay line 
and reduce power consump;on (40nW/pixel) <-> material budget


•  Threshold is applied to form a binary pulse


•  globally set by front-end bias DACs


•  Hit is latched into memory if STROBE is applied during binary pulse


•  Global shuier: triggered (up to 200 kHz Pb-Pb, 1MHz pp) or con;nuous (progr. integra;on ;me: 1μs - ∞) 


1. Introduc;on


STATE (Latch)	

MEM	
STROBE




ALPIDE: Threshold and noise
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1. Introduc;on


•  Threshold globally adjustable via on-chip DACs


•  Good threshold uniformity

•  Threshold RMS 10-15% of average threshold


•  Very low noise values

•  5-6e- without reverse substrate bias, 2-3e- with


•  Large threshold-to-noise ra;o

•  Fake-hits due to Gaussian noise extremely rare


•  Large opera;onal margin

•  MIPs release in order of 1600e- (MPV) in sensi;ve 

layer (Landau fluctua;ons, charge sharing also to 
be considered..)
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2. ALPIDE


•  Sufficient opera;onal margin arer 1.7x1013 1MeV n/cm2 (10 ;mes life ;me dose of upgraded 
ITS)


VBB=-3V


Detec;on efficiency and fake-hit rate
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2. ALPIDE


•  Cluster sizes and posi;on resolu;on slightly reduced arer 1.7x1013 1MeV n/cm2 (10 ;mes life 
;me dose of upgraded ITS) 


•  Resolu;on remains around desired 5μm in threshold range with detec;on efficiency > 99%


VBB=-3V


Posi;on resolu;on and cluster size
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Matrix readout by hit-driven asynchronous circuit (priority encoder) in double-columns:


•  sequen;ally provides addresses only of hit pixels è in-matrix zero suppression, fast


•  no ac;vity if not hit (no free running clock) è low-power matrix readout (~2mW) 


•  Readout ;me: 1 clk cycle (20MHz) for one hit


•  Minimum event size: chip header (16bit), region header (8bit), short data(16bit), trailer (8bit) -> 48 bit


ALPIDE: Readout

1. Introduc;on


double column 0	 double column 511	



ALICE experiment and upgrade plans
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1. Introduc;on


Inner Tracking System (ITS) 	 SSD (Strips) 	

SPD (Pixel) 	

SDD (Drir) 	

6 layers:


•  2 layers silicon pixel (SPD)


•  2 layers silicon drir (SDD)


•  2 layers silicon strips (SSD)


§  ALICE prepares major upgrade of experimental setup in LS2 of LHC in 2019/2020 


§  Targets: 


§  Large sample of recorded events: 10 nb-1 Pb-Pb plus pp and p-Pb data -> gain factor 100 in sta;s;cs 
over originally approved program 


§  Significant improvement of tracking and vertexing capabili;es at low pT  
 è  also present ITS needs 
to be upgraded!




ITS upgrade: design objec;ves
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1. Introduc;on


Improve poin;ng resolu;on by a factor ~3 in r-φ and ~5 in z at 
pT=500MeV/c (~40 μm at pT = 500 MeV/c )


•  reduce beam pipe radius: 29mm è 19mm 


•  get closer to IP: 39mm è 22mm (innermost layer)


•  reduce material budget: ~1.14% x/X0  è ~0.3%  x/X0 (inner layers)


     è less material è reduce power consump;on


•  reduce pixel size: 50x425μm2 è O(30x30μm2)




Improve tracking efficiency and pT-resolu;on at low pT   

•  increase granularity: 6 layers  è 7 layers, only pixel sensors





Fast readout   

•  readout of Pb-Pb at up to 100 kHz (presently 1kHz) and 400kHz 

for pp




Fast inser;on/removal of detector modules 


•  possibility to replace non-func;oning detector modules during 
yearly shutdown





è Decision to fully replace present ITS
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Layout of new ALICE Inner Tracking System
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1. Introduc;on


Layer  n. 

12
16
20


3
4
5
6

N. of staves


0
2

24
30
42
48


1


Outer 
Barrel	

Inner Barrel	

7-layer geometry:

•  r-coverage: 23 mm - 400 mm

•  η-coverage: |η|≤ 1.22 for tracks from 90% luminous region


•  3 Inner Barrel layers: 0.3% x/X0 per layer

•  4 Outer Barrel layers: 1% x/X0 per layer


290mm
Stave length
 900 mm
1500 mm




Stave layout
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1. Introduc;on


Flexible	PCB	

9	sensors	

Space	Frame	

Inner Barrel stave	

Outer Barrel	

Cold	Plate	

Inner barrel module (x48):

•  9 chips, each read out using 1.2 Gb/s link


Outer barrel module (x1800) 

•  2⨉7 chips (1 master, 6 slaves), locally 

interconnected, read out using 2⨉400 Mb/s links




Module assembly
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1. Introduc;on


•  Placement is handled by automated custom-made 
machine (distributed to 6 assembly sites worldwide)


•  Flexible PCB is glued to chips





Chip placement + gluing to flexible PCB	
	

Wire bonding	

•  Chips are wire bonded through vias in the FPCB 
distributed over full chip surface 


Module (HIC – hybrid integrated circuit): chips glued and wire-bonded to flexible PCB	



Detector readout
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1. Introduc;on


Detector 	 Readout units	5m cable	

•  1.2 Gb/s (data IB)

•  400 Mb/s (data OB)


•  80 Mb/s (ctrl IB/OB)

•  Clock

•  Power


•  Total: 192 Readout Units

•  Distribute trigger and control 

signals

•  Interface data links to ALICE DAQ

•  Control power supplies of chips 


•  Readout logic fully integrated into 
ALPIDE


•  ALPIDE can directly drive 5m 
cables using integrated high-speed 
transmiiers (up to 1.2 Gb/s)


•  No further electronics on detector




ALPIDE: Power consump;on
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ALPIDE	Inner	
Barrel	Mode	

ALPIDE	Master	
Chip	Mode	

ALPIDE	Slave	Chip	
Mode	

[m
W
]	

DCLK	tx	

Local	Bus	(1/7)	

Other	

DTU-LVDS	

DTU-Serializer	

DTU-PLL		

Digital	Periphery	

Strobing	

Pr.	Encoders	

Bias	

Analog	Pixels	

184 mW
 184 mW


109 mW


Outer Barrel: 27 mW/cm2 


Inner Barrel: 41 mW/cm2


Data: combina;on of available 
measurements and simula;ons


Values scaled for readout at 100 
kHz rates and max occupancies


Clock ga;ng enabled


2. ALPIDE




Test chip: INVESTIGATOR
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3. Future developments

5.0mm	

5.
7m

m
	

•  INVESTIGATOR: dedicated test chip developed within ALPIDE 
R&D phase, designed for systema;c studies on influence of 
design parameters on sensor characteris;cs


•  Consists of 134 matrices of 8x8 pixels (“mini-matrices”, MM)


•  Various pixel sizes (20x20μm2 to 50x50μm2) and collec;on 
electrode designs (n-well size, spacing)


•  Each of the mini-matrices can be selected and connected to a 
set of 64 output buffers (~10ns rise ;me)


•  All 64 pixels of a mini-matrix can be read out in parallel, allowing 
for con;nuous parallel signal sampling


•  Possibility of measuring evolu;on of a cluster, i.e. charge 
collec;on ;me in each pixel 


•  Dedicated 64-channel readout system developed, sampling at 
65MHz


ü  Chips produced on different wafers with epi-layer thickness 
between 18μm and 30μm, and in different process variants 
(std, mod)


ü  Samples tested up to 1015 1MeV neq/cm2 and 1Mrad


MM address

Pixel pitch


[μm]

Number of MM


(per pitch)


0 - 35
 20
 36


36 - 57
 22
 22


58 - 67
 25
 10


68 - 103
 28
 36


104 - 111
 30
 8


112 – 123
 40
 12


123 - 134
 50
 10


INVESTIGATOR	
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•  Precise charge-collec;on ;me measurements performed using differen;al probe and 
fast scope on single pixel 


•  Fit of waveforms with func;on:


•  ALPIDE-like pixel studied: 28μm pitch, 2um n-well diameter, 3μm spacing, 25μm epi


•  Measurements performed with 55Fe


3. Future developments

Charge-collec;on ;me


τ


Example	waveform	and	fit	



Charge-collec;on ;me measurements with X-Rays
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3. Future developments


For X-Ray absorp;on in sensor fabricated with the std process 
three cases can be defined:




1.  Absorp;on in deple;on volume: charge collected by drir, no 
charge sharing, single pixel clusters


–  Events of this case populate the calibra;on (K-α) peak in signal histogram


–  Charge collec;on ;me  expected to be ≈ 1ns


2.  Absorp;on in epitaxial layer: charge par;ally collected by 
diffusion and then drir, charge sharing between pixels 
depending on posi;on of X-Ray absorp;on


–  Charge collec;on ;me expected to be dependent on distance of the X-Ray 
absorp;on from a deple;on volume, and longer than for events of case 1


3.  Absorp;on in substrate: 

–  contribu;on depending on depth of X-Ray absorp;on posi;on within 

substrate, and charge carrier life;me within substrate


55Fe: two X-Ray emission modes:




1.  K-α: 5.9keV (1640e/h in Si), rela;ve frequency: 89.5%

       aienua;on length in Si: 29μm

2.  K-β: 6.5keV (1800e/h in Si), rela;ve frequency: 10.5%

       aienua;on length in Si: 37μm


Signal [ADC]
0 100 200 300 400 500 600

]
-1

En
tri

es
 [(

4 
AD

C
)

0

0.5

1

1.5

2

2.5

3

3.5

4
310×

seed signal
matrix signal
depletion zone
epitaxial layer

seed pixel


nxn matrix


S
ig

na
l [

A
D

C
] 

Col 



26/01/2016		 J.W.	van	Hoorne,	CERN	 43	

Rise	hme	(τ):	

Calibra;on (drir) peak: no charge sharing, signal collected by drir (in <= 1ns)

•  Rise ;me about equal for all all values of VBB, moreover about equal to buffer rise ;me

•  Drir peak clearly visible in low-VBB rise ;me histograms, for larger VBB it overlaps with 

diffusion-drir peak


3. Future developments

Charge-collec;on ;me - Standard process


MM75: 28μm pitch, 2um n-well diameter, 3μm spacing, 25μm epi


VBB	=	-1V	 VBB	=	-3V	 VBB	=	-6V	



Rise	hme	(τ):	
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Charge sharing – signal collected partly by diffusion and then drir 

•  Larger rise ;mes with decreasing signal clearly visible in low-VBB 

measurements

•  Less clear in high-VBB measurements (larger deple;on volumes)


3. Future developments

Charge-collec;on ;me - Standard process


MM75: 28μm pitch, 2um n-well diameter, 3μm spacing, 25μm epi


VBB	=	-1V	 VBB	=	-3V	 VBB	=	-6V	


