The ALPIDE telescope

J.W. van Hoorne - CERN

on behalf of the ALICE collaboration

Barcelona, January 26th, 2017

5th Beam Telescope and Test Beams Workshop 2017

- 1. Introduction
- 2. ALPIDE telescope
- 3. Selected results
- 4. Summary and future developments

1. Introduction

- 2. ALPIDE telescope
- 3. Selected results
- 4. Summary and future developments

ALPIDE and the Upgrade of the ALICE Inner Tracking System

1. Introduction

ALPIDE 1. Introduction

- Produced in the TowerJazz 180nm CMOS Imaging Sensor (CIS) process
- 25µm epitaxial layer
- Full CMOS within pixel matrix

Key concepts:

- In-pixel amplification
- In-pixel hit discrimination
- In-pixel 3-level event memory
- In-matrix zero-suppression

Features:

- Dimension: 30mm x 15mm (1024 x 512 pixels)
- Pixel pitch: 29µm x 27µm
- Thinned to 50 μ m (0.05% x/X₀)
- Possibility to apply reverse bias voltage
- Event-time resolution 2-4 μ s (charge collection time only 1-30ns, but not exploited)
- Very low power consumption (40mW/cm²) no cooling needed in test beam setup

- Global shutter: triggered acquisition (up to 200kHz Pb-Pb or 1MHz pp <-> ~6MHz/cm² particle hit rate) or continuous (progr. integration time: 1µs – quasi ∞)
- Binary readout
- 1.2 Gbit/s serial link, can drive up to 5m of cable
- Two possible connection schemes: pads over the matrix and pads at the periphery

- 1. Introduction
- 2. ALPIDE telescope
- 3. Selected results
- 4. Summary and future developments

ALPIDE carrier card and DAQ board

2. ALPIDE telescope

ALPIDE carrier card:

- Large opening underneath ALPIDE to reduce material budget
- PCIe connector used as mechanical and electrical interface (with custom electrical protocol)
- Small pads at periphery used for bonding

DAQ board:

- USB-3.0 for connection to PC
- PCIe connector for carrier card
- Various GPIO connectors

- ALPIDE telescopes typically consist of 7 planes, plane distance ~2cm
- Central chip is typically treated as Device Under Test (DUT)

BTTB5, 26/01/2016

ALPIDE Telescopes 2. ALPIDE telescope

Telescope 1

Telescope 2

ALPIDE Telescope

2. ALPIDE telescope

- ALPIDE telescopes successfully operated in various test beam facilities all over the world (CERN PS, DESY, BTF Frascati, Pohang/Korea, SLRI/Thailand)
- Simulated track resolution at DUT around 2-3 μ m with 6GeV/c pions
- Studied performance in terms of: detection efficiency, position resolution, cluster sizes and shapes

ALPIDE Telescope: Software

2. ALPIDE telescope

- DAQ using EUDAQ:
 - ALPIDE producer specialities:
 - Control of external equipment
 - Automatic reconfiguration for errors
 - Online data consistency checking (absolute and relative timestamps as well as trigger ids)
 - Automation:
 - Generation of configuration files
 - Changing configuration files after a certain number of events
 - Control of power supplies, pulser, linear and rotary stages
 - Watchdog sending texts and emails
 - Check EUDAQ control
 - Last event written
 - File size of current run
 - Out-of-sync
 - Like this about 1000 runs, each with a different setting (threshold, reverse bias, integration time, etc.), could be performed in 10 days without presence of shift crew
- Analysis using EUTelescope

Telescope Optimizer tool

2. ALPIDE telescope

Nice online tool for optimizing telescope setup

- Variable parameters:
 - Plane position
 - Material budget per plane
 - Resolution per plane
 - Particle type and momentum
- Planes can be moved by mouse, results will be automatically updated
- Tracks and measured points in planes can be simulated
- One can also construct a setup by URL, see e.g. at bottom of this slide

• Page: http://mmager.web.cern.ch/mmager/telescope/ tracking.html

Source: https://gitlab.cern.ch/mmager/telescope-

🗧 🔶 C 🕼 mmager.web.cern.ch/mmager/telescope/tracking.html#part=pi&p=6&x=[-10,-6,-4,-2,0,2,4,6,10]&XX0=[,... 🖈 🚺 🥪 🗁 🗄

The Telescope Optimiser

article: π ⁺ / π ⁻ (Pion)			I Momentum: 6 G		eV/c				
	Layout Sensor			Tracking	MC track position				
F	Plane	Position	Thickness	Resolution	Tracking	Resolution	real	measured	reconstructed
	#	(cm)	(% X/X ₀)	(µm)	used	(µm)	(µm)	(µm)	(µm)
Γ		-10.0				5.92	0.0		0.0
	1	-6.0	0.05	5.0		3.57	0.0	0.0	0.0
	2	-4.0	0.05	5.0		2.80	0.0	0.0	0.0
	3	-2.0	0.05	5.0		2.36	0.0	0.0	0.0
	4	0.0	0.05	5.0		2.22	0.0	0.0	0.0
	5	2.0	0.05	5.0		2.36	0.0	0.0	0.0
	6	4.0	0.05	5.0		2.80	0.0	0.0	0.0
	7	6.0	0.05	5.0		3.57	0.0	0.0	0.0
		10.0				5.92	0.0		0.0
		equidistant	all as #1	all as #1			MC	measure	
							MC & n	neasure	

Examples: CERN PS | CERN SPS | Frascati BTF | DESY | Řež (Prague) | Pohang | SLRI

The Telescope Optimiser V1.01 Copyright (C) 2016 Magnus Mager, CERN | This application and the underlying tracking code are relased under the GPLv3, see sources for details.

optimiser

- 1. Introduction
- 2. ALPIDE telescope
- 3. Selected results
- 4. Summary and future developments

ALPIDE: Reverse bias dependence

3. Selected results

Detection efficiency and fake-hit rate

25μm epitaxial layer -> ~1600e⁻ produced produce by MIP (MPV) -> then also charge sharing, Landau fluctuations to be considered..

- Detection efficiency stays at 100% ε over wide range of thresholds
 - Chip-to-chip fluctuations negligible
- Clear ordering: increasing performance with larger reverse bias
 - Most significant improvement from 0V to -1V
- Extremely low fake-hit rate (Gaussian noise only 2-6 e⁻)
 - Below measurement limit of 10⁻¹¹/pixel/event after masking 10 pixels (1/50 000), only increased for -6V

ALPIDE: Reverse bias dependence

3. Selected results

Position resolution and average cluster size

- Position resolution around desired 5µm in threshold range with detection efficiency > 99%
 - Biggest improvement from 0V to -1V
 - Little dependence on reverse bias from -2V to -6V
- Average cluster sizes vary between 1 and 3 pixels (for MIPs)

ALPIDE: Position-resolved results

3. Selected results

Cluster size and detection efficiency as function of the impinging point of the track within area of 2x2 pixels

• for reverse bias of -3V, threshold of ~180e⁻ (high for ALPIDE!), 6GeV/c pions

- Cluster size strongly depending on impinging point: ~1 in pixel centers, ~4 in pixel corners
- At higher thresholds, detection efficiency first starts to drop in pixel corners <-> almost equal charge sharing between 4 pixels

BTTB5, 26/01/2016

J.W. van Hoorne, CERN

ALPIDE: Position-resolved results

3. Selected results

Shape:

Cluster shapes as function of the impinging point of the track within area of 2x2 pixels

• for reverse bias of -3V, threshold of ~180e⁻ (high for ALPIDE!), 6GeV/c pions

Distribuition of clusters with shape ID 2 within four pixels

Distribuition of clusters with shape ID 3 within four pixel

0 0 0 0.01 0.02 0.03 0.04 0.05 V (rem)

Distribuition of clusters with shape ID 6 within four p

......

0.05 X (mm)

BTTB5, 26/01/2016

- 1. Introduction
- 2. ALPIDE telescope
- 3. Selected results
- 4. Summary and future developments

- Successfully designed and operated a 7-plane beam telescope fully consisting of ALPIDE chips
 - With 6GeV/c pions, a track resolution at the Device Under Test (DUT) of 2-3µm was reached
 - Setup highly automated: about 1000 runs, each with a different setting (threshold, reverse substrate bias, integration time, etc.), could be performed in 10 days without presence of a shift crew

- ALPIDE is very suitable chip for beam telescopes
 - Can be thinned down to only $50\mu m (0.05\% x/X_0)$, making it suitable for high-resolution beam telescopes even at low beam energies
 - 3cm x 1.5cm in size
 - Spatial resolution of ~5µm
 - Event-time resolution of $<4\mu$ s (a single additional plane with better timing resolution could easily be added to improve this)
 - Global shutter architecture

Future developments

4. Summary and future developments

- Hardware:
 - 9-plane telescope with high-speed back plane
 - Plane distance of only 1cm
 - Using ITS Inner Barrel module readout topology with 9 1.2Gbit/s serial links
 - Connected via firefly cable (up to 5m) to ITS Readout Unit (RU) prototype
 - RU connected via USB-3.0 to PC
 - Test beam with ITS modules
- Software:
 - Generalise EUDAQ producer to
 - our other readout systems (including the Readout Unit)
 - cover both single chips and modules
 - Update our analysis code w.r.t. general EUTelescope developments
- High precision measurements with different angles of beam incidence
 - First tries with summer student last summer, but desired track resolution not yet achieved
 - Setup (plane distances) to be optimized, go to SPS to reduce multiple scattering
 - Analysis software

BACKUP

BTTB5, 26/01/2016

Parameter	Inner Barrel	Outer Barrel	ALPIDE	
Silicon thickness	50μ	\checkmark		
Spatial resolution	5µm	10µm	~5µm	
Chip dimension	15mm x	\checkmark		
Power density	< 300mW/cm ²	< 100mW/cm ²	< 40mW/cm ²	
Event time resolution	< 30	~2µs		
Detection efficiency	> 99	\checkmark		
Fake hit rate	< 10 ⁻⁵ /eve	nt/pixel	<<< 10 ⁻⁶ /event/pixel	
NIEL tolerance	1.7x10 ¹² 1MeV n _{eq} /cm ²	10 ¹¹ 1MeV n _{eq} /cm ²	>1.7x10 ¹³ 1MeV n _{eq} /cm ²	
TID tolerance	270krad	10krad	>500krad	

- ALPIDE fulfills or surpasses pixel-chip requirements of the ALICE ITS upgrade
- ALPIDE development represents significant advancement of MAPS regarding power density, fakehit rate, readout speed, and radiation hardness

ALPIDE: Process technology

1. Introduction

TowerJazz 180nm CMOS imaging sensor process:

- High-resistivity (>1kΩcm) p-type epitaxial layer (18µm-40µm) on p-type substrate (~10Ωcm)
- Deep p-well for full CMOS circuitry within the matrix
- Feature size 180nm and 6 metal layers \rightarrow dense circuitry

Sensor only partially depleted \rightarrow application of moderate reverse bias V_{BB} (<6V) possible via the substrate

Signal from collection diode: $\Delta V \simeq Q/C$

- particular focus put on low pixel-input capacitance C
- → values as low as 2fF achieved (signal of 80mV for 1000e⁻)

Charge collection time: ~1-30ns

depending on size of depletion zone (reverse substrate bias, collection diode geometry)

26/01/2016

3D and 2D view of 2x2 pixels 2. ALPIDE

full CMOS circuitry within pixel matrix

ALPIDE in-pixel circuitry

- Front-end: continuously active, power consumption 40nW (9 transistors, full custom)
- Multi-event memory: 3 stages (62 transistors, full-custom)
- Configuration: masking and pulsing registers (31 transistors, full-custom)
- Testing: analog and digital test pulse circuitry (17 transistors, full-custom)
- Matrix read-out: priority encoder, asynchronous, hit-driven

26/01/2016

Q/C ratio and sensor design parameters 2. ALPIDE

Sensor performance mainly determined by:

- Pixel pitch
- Collection n-well size
- Spacing between the collection n-well and surrounding(deep) p-well
- Epitaxial layer thickness and resistivity
- Reverse bias voltage V_{BB} on the collection diode
- Sensor optimization studies mainly by small-scale prototypes with analog readout
- During design of ALPIDE, particular focus put on low pixel-input capacitance C
 - → values as low as 2fF achieved (signal of 80mV for 1000e⁻)

Parameters selected for ALPIDE (29µm x 27µm pixel size):

- 25µm epitaxial layer
- 2μm n-well diameter, 3μm spacing
 - > 88% of pixel surface can be used for circuitry

Pixel and collection electrode geometry (not to scale):

26/01/2016

J.W. van Hoorne, CERN

Sensor optimization – Pixel-input capacitance

2. ALPIDE

Epitaxial layer resistivity

- • - • - •

Pixel input capacitance significantly decreased with increasing $|V_{BB}|$

~5fF for V_{BB}=0V \rightarrow ~2.5fF for V_{BB}=-6V

Epitaxial layer resistivity

• No influence in range between $1k\Omega cm$ and $7.5k\Omega cm$ with current pixel layout

Collection diode geometry

 smaller collection n-well, larger spacing → smaller pixel input capacitance at large V_{BB}

Sensor optimization – Epitaxial layer thickness

2. ALPIDE

Prototypes produced on wafer with different epitaxial layer thickness and resistivity

- increasing epitaxial layer thickness:
 - generated charge (matrix signal) increases linearly
 - cluster size increases non-linearly

Optimum epitaxial layer thickness depending on achievable depletion volume

 \rightarrow depending on V_{BB} and geometry

Parameters selected for ALPIDE: 25µm epitaxial layer, 2µm n-well diameter, 3µm spacing

ALPIDE: Floor plan

1. Introduction

26/01/2016

ALPIDE: Front-end circuit

1. Introduction

Front-end acts as delay line

- Sensor and front-end continuously active
- Upon particle hit front-end forms a pulse with peaking time of 2-4μs (<-> time walk)
 - charge collection time < 30ns! -> long pulse duration a choice made for ALICE ITS: functioning as delay line and reduce power consumption (40nW/pixel) <-> material budget
- Threshold is applied to form a binary pulse
 - globally set by front-end bias DACs
- Hit is latched into memory if STROBE is applied during binary pulse
 - Global shutter: triggered (up to 200 kHz Pb-Pb, 1MHz pp) or continuous (progr. integration time: $1\mu s \infty$)

ALPIDE: Threshold and noise

1. Introduction

- Threshold globally adjustable via on-chip DACs
- Good threshold uniformity
 - Threshold RMS 10-15% of average threshold
- Very low noise values
 - 5-6e⁻ without reverse substrate bias, 2-3e⁻ with
- Large threshold-to-noise ratio
 - Fake-hits due to Gaussian noise extremely rare
- Large operational margin
 - MIPs release in order of 1600e- (MPV) in sensitive layer (Landau fluctuations, charge sharing also to be considered..)

Detection efficiency and fake-hit rate

Sufficient operational margin after 1.7x10¹³ 1MeV n/cm² (10 times life time dose of upgraded ITS)

2. ALPIDE

Position resolution and cluster size

- Cluster sizes and position resolution slightly reduced after 1.7x10¹³ 1MeV n/cm² (10 times life time dose of upgraded ITS)
 - Resolution remains around desired 5µm in threshold range with detection efficiency > 99%

Matrix readout by hit-driven asynchronous circuit (priority encoder) in double-columns:

- sequentially provides addresses only of hit pixels \rightarrow in-matrix zero suppression, fast
- no activity if not hit (no free running clock) \rightarrow low-power matrix readout (~2mW)
- Readout time: 1 clk cycle (20MHz) for one hit
- Minimum event size: chip header (16bit), region header (8bit), short data(16bit), trailer (8bit) -> 48 bit

ALICE experiment and upgrade plans

1. Introduction

- ALICE prepares major upgrade of experimental setup in LS2 of LHC in 2019/2020
- Targets:
 - Large sample of recorded events: 10 nb⁻¹ Pb-Pb plus pp and p-Pb data -> gain factor 100 in statistics over originally approved program
 - Significant improvement of tracking and vertexing capabilities at low p_T
- → also present ITS needs to be upgraded!

ITS upgrade: design objectives

1. Introduction

Improve pointing resolution by a factor ~3 in r- ϕ and ~5 in z at p_T=500MeV/c (~40 μ m at p_T = 500 MeV/c)

- reduce beam pipe radius: 29mm → 19mm
- get closer to IP: 39mm → 22mm (innermost layer)
- reduce material budget: ~1.14% $x/X_0 \rightarrow$ ~0.3% x/X_0 (inner layers)
 - \rightarrow less material \rightarrow reduce power consumption
- reduce pixel size: $50x425\mu m^2 \rightarrow O(30x30\mu m^2)$

Improve tracking efficiency and p_T -resolution at low p_T

• increase granularity: 6 layers \rightarrow 7 layers, only pixel sensors

Fast readout

 readout of Pb-Pb at up to 100 kHz (presently 1kHz) and 400kHz for pp

Fast insertion/removal of detector modules

• possibility to replace non-functioning detector modules during yearly shutdown

→ Decision to fully replace present ITS

Layout of new ALICE Inner Tracking System

1. Introduction

7-layer geometry:

- r-coverage: 23 mm 400 mm
- η -coverage: $|\eta| \le 1.22$ for tracks from 90% luminous region

- 3 Inner Barrel layers: 0.3% x/X₀ per layer
- 4 Outer Barrel layers: 1% x/X₀ per layer

Stave layout 1. Introduction

Inner Barrel stave

Outer Barrel

Outer barrel module (x1800)

• 2×7 chips (1 master, 6 slaves), locally interconnected, read out using 2×400 Mb/s links

Module assembly

1. Introduction

Module (HIC – hybrid integrated circuit): chips glued and wire-bonded to flexible PCB

Chip placement + gluing to flexible PCB

Wire bonding

- Placement is handled by automated custom-made machine (distributed to 6 assembly sites worldwide)
- Flexible PCB is glued to chips

• Chips are wire bonded through vias in the FPCB distributed over full chip surface

Detector

5m cable

Readout units

	0
+ 1000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1000	

- Readout logic fully integrated into ALPIDE
- ALPIDE can directly drive 5m cables using integrated high-speed transmitters (up to 1.2 Gb/s)
- No further electronics on detector

- 1.2 Gb/s (data IB)
- 400 Mb/s (data OB)
- 80 Mb/s (ctrl IB/OB)
- Clock
- Power

- Total: 192 Readout Units
- Distribute trigger and control signals
- Interface data links to ALICE DAQ
- Control power supplies of chips

Inner Barrel: 41 mW/cm²

Local Bus (1/7)

Outer Barrel: 27 mW/cm²

Data: combination of available measurements and simulations Values scaled for readout at 100 kHz rates and max occupancies Clock gating enabled

Test chip: INVESTIGATOR

3. Future developments

- INVESTIGATOR: dedicated test chip developed within ALPIDE R&D phase, designed for systematic studies on influence of design parameters on sensor characteristics
- Consists of 134 matrices of 8x8 pixels ("mini-matrices", MM)
 - Various pixel sizes (20x20µm² to 50x50µm²) and collection electrode designs (n-well size, spacing)
- Each of the mini-matrices can be selected and connected to a set of 64 output buffers (~10ns rise time)
 - All 64 pixels of a mini-matrix can be read out in parallel, allowing for continuous parallel signal sampling
 - Possibility of measuring evolution of a cluster, i.e. charge collection time in each pixel
 - Dedicated 64-channel readout system developed, sampling at 65MHz
- ✓ Chips produced on different wafers with epi-layer thickness between 18µm and 30µm, and in different process variants (std, mod)
 - ✓ Samples tested up to 10^{15} 1MeV n_{eq} /cm² and 1Mrad

40

50

112 - 123

123 - 134

12

10

Charge-collection time

3. Future developments

• Precise charge-collection time measurements performed using differential probe and fast scope on single pixel

 $t > t_0$

• Fit of waveforms with function: $t \le t_0$

 $f = a + m \cdot (t - t_0)$ $f = a + m \cdot (t - t_0) - b \cdot (e^{-\frac{t - t_0}{\tau}} - 1)$

- ALPIDE-like pixel studied: 28μm pitch, 2um n-well diameter, 3μm spacing, 25μm epi
- Measurements performed with ⁵⁵Fe

Charge-collection time measurements with X-Rays

3. Future developments

⁵⁵Fe: two X-Ray emission modes:

- 1. K- α : 5.9keV (1640e/h in Si), relative frequency: 89.5% attenuation length in Si: 29 μ m
- 2. K- β : 6.5keV (1800e/h in Si), relative frequency: 10.5% attenuation length in Si: 37 μ m

For X-Ray absorption in sensor fabricated with the std process three cases can be defined:

- 1. Absorption in depletion volume: charge collected by drift, no charge sharing, single pixel clusters
 - Events of this case populate the calibration (K- α) peak in signal histogram
 - Charge collection time expected to be ≈ 1ns
- 2. Absorption in epitaxial layer: charge partially collected by diffusion and then drift, charge sharing between pixels depending on position of X-Ray absorption
 - Charge collection time expected to be dependent on distance of the X-Ray absorption from a depletion volume, and longer than for events of case 1
- 3. Absorption in substrate:
 - contribution depending on depth of X-Ray absorption position within substrate, and charge carrier lifetime within substrate

Charge-collection time - Standard process

3. Future developments

MM75: 28µm pitch, 2um n-well diameter, 3µm spacing, 25µm epi

Charge-collection time - Standard process

3. Future developments

MM75: 28µm pitch, 2um n-well diameter, 3µm spacing, 25µm epi

