

GBL Track Resolution Calculator

https://github.com/simonspa/resolution-simulator/ Hands-On Exercises

Hendrik Jansen Simon Spannagel

Installation

- Install and source ROOT (from https://root.cern.ch/), either ROOT5 or ROOT6 will work fine.
- Install GBL (from https://www.wiki.terascale.de/index.php/GeneralBrokenLines)

svn checkout http://svnsrv.desy.de/public/GeneralBrokenLines/tags/V01-18-00/cpp GeneralBrokenLines
cd GeneralBrokenLines
mkdir build && cd build/
cmake ..
make && make install

• Export the GBL library path:

```
export GBLPATH=/path/to/gbl/installation
```

If you exactly follow the above description for GBL installation, it will simply be

```
cd ../
export GBLPATH=`pwd`
```

• Clone and compile the GBL Track Resolution Calculator:

```
cd ../
git clone https://github.com/simonspa/resolution-simulator.git && cd resolution-simulator/
mkdir build && cd build
cmake ..
make
```

Software/Class Structure

- (simple) interface to GBL providing convenience functions
- Plane class
 - hold information on material, position, resolution
- Telescope class
 - hold planes, provide access to (total) material budget, GBL trajectory and fit results (resolution)
- Utility functions:
 - Generator functions for GBL points (with/without measurement ...)
 - (some) constants for material radiation lengths
 - Logging mechanism

Repository & Contributions

- Hosted on GitHub
- Licensed LGPLv3
- Go ahead, fork, improve, contribute back!

💼 cmake	Update FindGBL cmake module	3 months ago
devices	Make CMakeLists for device targets more flexible: use GLOB	2 hours ago
doc	Add drawings of plane structure by Micha	a year ago
telescope	Add child classes of plane: scatterer and reference, merely for conve	10 months ago
🖿 utils	Remove hardcoded beam energy	a year ago
.gitignore	update gitignore	a year ago
CMakeLists.txt	Slightly rework CMake mechanism	a year ago
LICENSE.md	Add LGPLv3 license file	10 months ago
README.md	Update description for compiling device targets	2 hours ago

Tasks (It's a Hands-On Session!)

Task 1: DUT Material in the DATURA Telescope

de

- After compilation: binaries in "./devices"
- DATURA telescope with variable DUT material in the center
 - Read the code: tscope_datura.cc
 - Call the executable: devices/datura
 - Check the output in datura-resolution.root
- Dependency of track resolution at DUT on DUT material budget
- Tasks:
 - Is the order of adding planes of importance?
 - Where the trajectory is built? Where the track fit is performed?
 - What is the track resolution with DUTs of 0.002, 0.01, 0.02 X0?

Task 2: Calculate the Track Resolution

de

- Implement a telescope with the following properties
 - 6 pixel detectors, intrinsic resolution 4.512 um, 70 um Silicon
 - 55 mm equidistant spacing between tel. planes, beam energy 5 GeV
 - Additional Silicon scatterer, 700 um thick, at telescope center
- Evaluate the resolution at the position of
 - The scatterer ("Device under test")
 - The first and last telescope plane
- Hints
 - Use new source file!
 - Commit!
- Explain the resolution values, what resolution is calculated?

26/01/17

Simon Spannagel

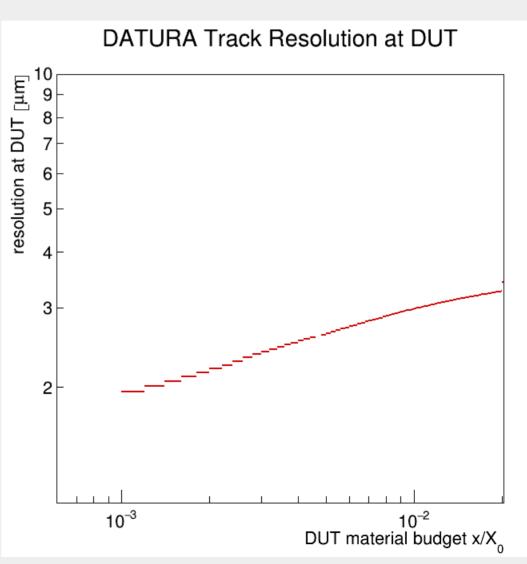
Task 3: Find the Optimal Plane Spacing

- Consider the DATURA geometry/telescope from task 1
- The distance between DUT and the two adjacent telescope planes remains constant at 20mm
- Scan through the telescope plane distance 20mm < x < 150mm
- What are the preferred plane distances for
 - a DUT with 0.01% X0
 - a DUT with 0.001% X0

in order to achieve the best possible track resolution at the DUT?

• Plot the result.

Solutions

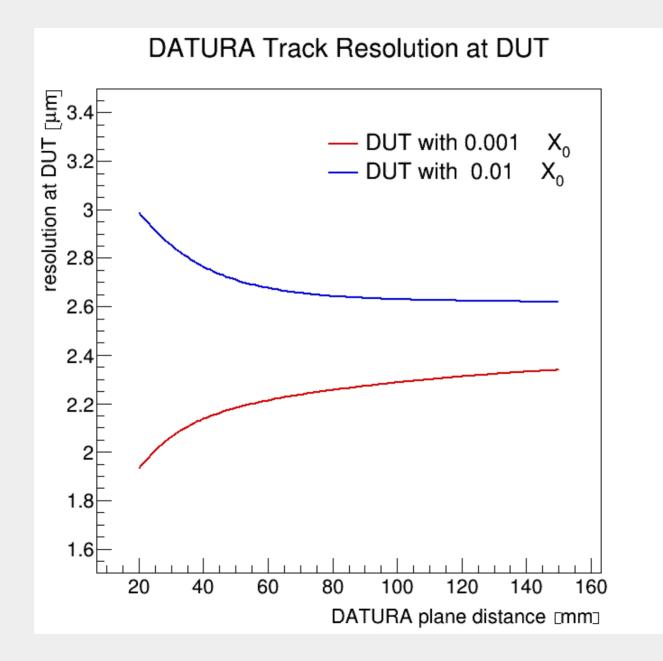


Solutions/Output Task 1

- Trajectory build in telescope constructor/getTrajectory()
- Track fit performed in getResolution()
- Resolutions:

Resolution at DUT with 0.002 X0: 2.18581 Resolution at DUT with 0.01 X0: 2.98493 Resolution at DUT with 0.02 X0: 3.27203

Solution/Output Task 2



INFO: Received 7 planes.

- DEBUG: <assembly.cc/getTotalMaterialBudget:L114> Calculating total material in the path...
- DEBUG: <assembly.cc/getTotalMaterialBudget:L130> Total track material budget x/X0=0.0128634
- DEBUG: <assembly.cc/telescope:L48> Added plane at 0 (scatterer + measurement)
- DEBUG: <assembly.cc/telescope:L96> Added plane at 55 (scatterer + measurement)
- DEBUG: <assembly.cc/telescope:L96> Added plane at 110 (scatterer + measurement)
- DEBUG: <assembly.cc/telescope:L100> Added plane at 137.5 (scatterer)
- DEBUG: <assembly.cc/telescope:L96> Added plane at 165 (scatterer + measurement)
- DEBUG: <assembly.cc/telescope:L96> Added plane at 220 (scatterer + measurement)
- DEBUG: <assembly.cc/telescope:L96> Added plane at 275 (scatterer + measurement)
- DEBUG: <assembly.cc/telescope:L109> Finished building trajectory.
- RESULT: Track resolution at SCAT with 0.00747464 X0: 3.74985um
- **RESULT:** Track resolution at first telescope planes: 4.00032um
- **RESULT:** Track resolution at last telescope planes: 4.00032um
 - Resolution at scatterer is calculated from unbiased residuals (no measurement of "DUT" added)
 - Telescope plane resolutions are calculated from biased residuals (including the plane under investigation)

Solution/Output Task 3

