SFB-TR9 meeting

Berlin, 25.03.09

Differential distributions in WW + 1-jet production at NLO QCD

Peter Uwer

Work in collaboration with S.Dittmaier, S. Kallweit

- 1. Motivation
- 2. Calculation
- **3.** Results
- 4. Conclusion / Outlook

Why is WW + 1 Jet important ?

Large fraction of WW with additional jet activity

→ Precise understanding important for tests of the SM at high scale, i.e. electro-weak gauge-boson coupling analysis

• WWj@NLO contributes to WW@NNLO

Recent progess concerning the 2-loop amplitudes [Czakon 07,08]

Important background process

 \rightarrow Higgs search at LHC

WW + 1-Jet — Motivation: Higgs search (LHC)

• For 135 GeV < m_h < 185 GeV:

Range 160-170 GeV now excluded by Tevatron, [Moriond 09]

 $H \rightarrow WW$ is dominant channel

For 130 GeV < m_h < 190 GeV,

Vector Boson Fusion (VBF) dominates over $gg \rightarrow H$ as far as signal significance is concerned

WW + 1-Jet — Motivation: Higgs search

NLO corrections for Higgs production via VBF known:

- Total cross section [Han, Valencia, Willenbrock '92; Spira '98; Djouadi, Spira '00]
- Differential distributions [Figy, Oleari, Zeppenfeld '03, Berger, Campbell '04] → QCD uncertainty ~ 4%

Experimental Signature:

```
Two forward tagging jets + "Higgs"
```

Background reactions:

Basic process: $0 \rightarrow W^+W^-q\bar{q}g$

Different quark flavours + crossing

 \rightarrow 3 x 4 = 12 different partonic channels

Diagrams for uu:

Leading-order results

- Jet algorithm required to render cross section finite → Ellis-Soper-Algorithm, no recombination at LO
- Dependence on 2x2-"CKM" matrix cancels (unitarity)
- Significance of individual channels due to PDF's
- Residual scale dependance:

LHC: 12(30)% for change 2(5) Tevatron: 25(75)% for change 2(5)

Virtual corrections

Sample diagrams

Again many different channels!

Further decomposition possible:

"bosonic corrections"

"fermionic corrections"

Real corrections

Two independent computer codes, based on:

- Short analytic expressions, using spinor helicity methods
- Madgraph [Stelzer, Long '94]

- Leading-order amplitudes checked with Madgraph
- Subtractions checked in singular regions
- Structure of UV singularities checked
- Structure of IR singularities checked

Most important:

• Two complete independent programs for all parts of the calculation, in particular:

complete numerics done twice !

Detailed comparison with other groups

Campbell, Ellis, Zanderighi (CEZ), JHEP 0712:056,2007

Binoth, Guillet, Karg, Kauer, Sanguinetti (in progress) (BGKKS)

\rightarrow Very good agreement !

Results WW+1-Jet — Tevatron

[Dittmaier, Kallweit, Uwer Phys.Rev.Lett.100:062003,2008]

Scale dependence at LHC only improved after jet-veto !

Steps towards more realistic predictions

- Consider also differential distributions
 - Catani-Seymour subtraction allows calculation of distributions without modification
 - Only book keeping problem → every dipole is binned separately
- Include decay of the W-bosons
 - On-shell approximation
 - Two different options: spin density approach or replace W-polarisation by decay current

+ minor modifications in the subtraction terms

Helicity amplitudes

 $\overrightarrow{}$ Tr $[\rho\rho_1\rho_2]$

 $\varepsilon_u \rightarrow J_u = \bar{u} \gamma_u v$

Madgraph

Differential Distributions: Tevatron

 \rightarrow Corrections ~25%, smaller for exclusive sample

→ Shape almost not affected by corrections, "K-factor" works

Differential Distributions: Tevatron

Similar conclusion as before

Differential distributions: Tevatron

Significant distortion, Phase space dependent K-factor

Pt introduces additional scale

Pt-dependent Renormalization scale?

Differential distributions: LHC

Differential distributions: LHC

- Our group: Two complete independent calculations
- In addition: perfect agreement with two other groups for individual phase space points
- Scale dependence is improved (\rightarrow LHC jet-veto)
- Corrections are important, 10-30%
- NLO has only mild effect on the shape of most distributions

Outlook

- Apply VBF Higgs boson search cuts
- "Phase space" dependent scale setting ?

Virtual corrections

Issues:

Scalar integrals
How to derive the decomposition ?

Traditional approach: Passarino-Veltman reduction

Large expressions \rightarrow numerical implementation

Numerical stability and speed are important

Four and lower-point tensor integrals:

Reduction à la Passarino-Veltman, with special reduction formulae in singular regions,

Five-point tensor integrals:

• Apply 4-dimensional reduction scheme, 5-point tensor integrals are reduced to 4-point tensor integrals

→ No dangerous Gram determinants!

[Denner, Dittmaier '02]

Based on the fact that in 4 dimension 5-point integrals can be reduced to 4 point integrals [Melrose ⁶⁵, v. Neerven, Vermaseren ⁸⁴]

Two independent computer codes based on:

- Feynarts 1.0 + Mathematica library + Fortran library
- Feynarts 3.2 [Hahn '00] + FormCalc/LoopTools [Hahn, Perez-Victoria '98]

Next-to leading order corrections

$$\sigma_{\text{NLO}} = \int_{m+1} \sigma_{\text{real}} + \int_{m} \sigma_{\text{virt.}} + \int dx \int_{m} \sigma_{\text{fact.}}(x)$$

Every piece is individually divergent,
only in the combination a finite result is obtained

Standard procedure:

[Frixione,Kunszt,Signer '95, Catani,Seymour '96, Nason,Oleari 98, Phaf, Weinzierl, Catani,Dittmaier,Seymour, Trocsanyi '02]

Dipole subtraction method

$$\sigma_{\rm NLO} = \underbrace{\int_{m+1} [\sigma_{\rm real} - \sigma_{\rm sub}]}_{\rm finite} + \underbrace{\int_{m} [\sigma_{\rm virt.} + \bar{\sigma}_{\rm sub}^{1}]}_{\rm finite} + \underbrace{\int_{m} dx \int_{m} [\sigma_{\rm fact.}(x) + \bar{\sigma}_{\rm sub}(x)]}_{\rm finite}$$

$$0 = -\int_{m+1} \sigma_{\rm sub} + \int_{m} \bar{\sigma}_{\rm sub}^{1} + \int_{m} dx \int_{m} \bar{\sigma}_{\rm sub}(x)$$
With:
$$\sigma_{\rm sub} \to \sigma_{\rm real} \quad \text{in all single-unresolved regions}$$

Dipole subtraction method

Example: $u\bar{u} \rightarrow W^+W^-gg$

 \rightarrow 10 dipoles required

Results WW + 1-Jet — LHC: cut dependence

[Dittmaier, Kallweit, Uwer Phys.Rev.Lett.100:062003,2008]

27

New ggH signal x-sections by Florian at Grazzini (arXiv:0901.2427)

 included NNLL σ(gg→H), latest MSTW2008 pdf, 2-loop ewk corrections, exact b-quark treatment @ NLO

$M_H (\text{Gev}/c^2)$	$\sigma_{gg \to H}$ (pd)	σ_{WH} (pb)	σ_{ZH} (pb)	$\sigma_{\rm VBF}$ (pb)	$Dr_{H \rightarrow WW}$
110	1.413	0.208	0.124	0.084	0.044
120	1.093	0.153	0.093	0.072	0.132
130	0.858	0.114	0.071	0.061	0.287
140	0.682	0.086	0.054	0.052	0.483
145	0.611	0.075	0.048	0.048	0.573
150	0.548	0.065	0.042	0.045	0.682
155	0.492	0.057	0.037	0.041	0.801
160	0.439	0.051	0.033	0.038	0.901
165	0.389	0.044	0.029	0.035	0.957
170	0.349	0.039	0.026	0.033	0.965
175	0.314	0.034	0.023	0.031	0.951
180	0.283	0.031	0.021	0.028	0.935
190	0.231	0.024	0.017	0.024	0.776
200	0.192	0.019	0.014	0.021	0.735

 M_{H} (GeV/ c^{2}) $\mid \sigma_{ac} \downarrow_{H}$ (pb) $\mid \sigma_{WH}$ (pb) $\mid \sigma_{ZH}$ (pb) $\mid \sigma_{VBE}$ (pb) $\mid Br_{H} \downarrow_{WW}$

