Introduction to lattice field theory

..not really (1 hr!), but a few points hopefully of interest here: 12 th SFB meeting 23.3.2009

BY ULLI WOLFF

Humboldt Universität, Berlin

Rôle of the functional integral

$$\langle \varphi(x_1)\varphi(x_2)\cdots\varphi(x_n)\rangle = \frac{1}{Z}\int D\varphi e^{-S[\varphi]}\varphi(x_1)\varphi(x_2)\cdots\varphi(x_n)$$

Formal:

- infinite Euclidean space time (Wick \rightarrow Minkowski)
- Feynman rules from $S[\varphi] \longrightarrow$ all orders PT
 - depends on split $S[\varphi] = S_0[\varphi] + g_0 S_I[\varphi]$, S_0 Gaussian
 - regularization $(D \neq 4, \mu, ...)$, renormalization $(g_0 \rightarrow g_R, ...)$, limit $(D \rightarrow 4, ...)$
- exists (renormalizability, finite correlations): known to all orders PT
- similar for gauge fields, fermions, ..., standard model
- \Rightarrow coefficients of [expected] asymptotic expansion in g_R :
- $|\operatorname{truth} \sum_{k=0}^{l_{\operatorname{sweat}}} c_k(g_R)^k| \propto (g_R)^{l_{\operatorname{sweat}}+1} \text{ as } g_R \to 0$
 - \circ $\,$ a priori limited precision and limited sweat
- finite g_R : no convergence, c_k useful only up to some order
- $\int D\varphi$... has never been defined, PT of what? NP contributions?

$$\langle \varphi(x_1)\varphi(x_2)\cdots\varphi(x_n)\rangle = \frac{1}{Z}\int D\varphi e^{-S[\varphi]}\varphi(x_1)\varphi(x_2)\cdots\varphi(x_n)$$

Lattice: define $\int D\varphi$... as a limit of finite dimensional integrals

- as Feynman did for QM \equiv QFT with D = 1
- finite volume V and finite spacing a
- evaluate exactly (if possible) or numerically or PT-expand
- in the end $a \to 0$ (and usually also $L \to \infty$) is necessary and difficult

lattice: $x = (x_0, x_1, x_2, x_3) = a n_\mu \in a \mathbb{Z}^4$ [x] = [a] = cmtorus: $\varphi(x)$ T-periodic in x_0 , L-periodic in $x_{1,2,3}$ T/a, L/a integer integrate over independent fields in volume $V = TL^3$

$$\int D\varphi.... \equiv \underbrace{\prod_{x} \int_{-\infty}^{\infty} d\varphi(x)}_{\frac{V}{a^4} - \text{fold}} d\varphi(x)....$$

- $S[\varphi]$ discretized. $\partial_{\mu} \rightarrow$ difference quotient, e.g. nearest neighbour
- continuum limit = critical point: universality

Scales on the lattice

- a: UV-cutoff; L, T: IR-cutoff; phys. scale: mass $m \sim \text{decay 2-point fct.}$
- it is usually assumed(?) that limits $a \to 0$ and $T, L \to \infty$ commute
- sometimes: $a \to 0$ at mL = #, mT = # fixed: finite size scaling limit
- exists, universal under the same renormalization (counter terms)
- therefore: finite size effects = predictions of the continuum theory
 - \circ realizable: finite T, Casimir situations, ?
- special case: mT finite, $mL = \infty$: finite temperature in ∞ volume
- limit $L \to \infty$ reached up to $\exp(-mL) \Rightarrow mL \approx 5$ usually okay
- limit $a \to 0$ reached up to $(am)^n, n = 1 \text{ or } 2 \Rightarrow \text{more problematic}$

Discretization of gauge fields

gauge-covariant derivative (continuum):

$$D_{\mu}\psi = \partial_{\mu}\psi + iA_{\mu}\psi = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[\underbrace{\operatorname{e}^{i\varepsilon A_{\mu}}}_{p.\operatorname{trans.}} \psi(x + \varepsilon\hat{\mu}) - \psi(x) \right]$$

has curvature

$$(\mathrm{e}^{i\varepsilon A_{\mu}(x)}\mathrm{e}^{i\delta A_{\nu}(x+\varepsilon\hat{\mu})} - \mathrm{e}^{i\delta A_{\nu}(x)}\mathrm{e}^{i\varepsilon A_{\mu}(x+\delta\hat{\nu})})\psi \simeq (\mathrm{e}^{i\varepsilon\delta F_{\mu\nu}(x)} - 1)\psi$$

gauge invariant action

$$S[A_{\mu}] = \int d^4x \, \frac{1}{2} \operatorname{tr} \left(F_{\mu\nu} F_{\mu\nu} \right)$$

Lattice:

- smallest parallel transport: $x \leftarrow x + a\hat{\mu}$, nearst neighbor
- $e^{i a A_{\mu}} \rightarrow U(x, \mu)$, algebra \rightarrow in group SU(3), living on links
- smallest measure of curvature, Wilson action:

U(x, μ)

- continuum limit at $g_0^2 \rightarrow 0 \leftrightarrow$ asymptotic freedom
- confinement of static quarks \leftrightarrow area decay of Wilson loop observable
- string tension vanishes in PT, trivial to show analytically in the strong coupling expansion valid for large lattice spacing (≠continuum limit)
- very precise numerical 'proof' close to the continuum (Yang Mills)

Discretization of fermions (quarks)

continuum, $T = L = \infty$, Grassmann:

$$S[\overline{\psi},\psi] = \int d^4x \,\overline{\psi} \,(\not\!\!\!D + m)\psi, \quad \not\!\!\!D = \gamma_\mu D_\mu, \quad \{\gamma_\mu,\gamma_\nu\} = 2\delta_{\mu\nu}, \quad \gamma_\mu = (\gamma_\mu)^\dagger$$

free, $D_{\mu} = \partial_{\mu}$:

$$\langle \psi(x)\overline{\psi}(0)\rangle = \int \frac{d^4p}{(2\pi)^4} e^{ip \cdot x} \frac{-ip + m}{p^2 + m^2}$$

pole \leftrightarrow particle: $(-iE, \vec{p})^2 = -m^2 \rightarrow E^2 = \vec{p}^2 + m^2$

lattice, naive, $T = L = \infty$:

$$S[\overline{\psi},\psi] = a^4 \sum_x \overline{\psi} \left(\gamma_\mu \tilde{\partial}_\mu + m\right) \psi, \quad \tilde{\partial}_\mu \psi = \frac{1}{2a} \left[\psi(x+a\hat{\mu}) - \psi(x-a\hat{\mu})\right]$$

• $\tilde{\partial}_{\mu}$ symmetric $\rightarrow \tilde{\mathcal{J}}$ antihermitian

but also (doubler):

$$\sin^2(i\underbrace{aE}_{\text{small}} \pm \pi) + \sum_k \sin^2(\underbrace{ap_k}_{\text{small}} \pm \pi) = -a^2m^2$$

 \implies 16 fermions appear in loops

Wilson fermions

modify the action:

$$\begin{split} S[\overline{\psi}\,,\psi] &= a^4 \sum_x \,\overline{\psi}\,(\gamma_\mu \tilde{\partial}_\mu + m - a \frac{r}{2} \underbrace{\partial_\mu \partial^*_\mu}_{\text{Laplacian}})\psi, \\ \langle \psi(x)\overline{\psi}\,(0) \rangle &= \int_{-\pi/a}^{\pi/a} \frac{d^4 p}{(2\pi)^4} \,\mathrm{e}^{i\,p\cdot x} \frac{-i\,\overset{\circ}{p} + M(p)}{\overset{\circ}{p}^2 + M^2(p)} \\ M(p) &= m + a \frac{r}{2} \hat{p}^2, \quad \hat{p}_\mu = \frac{2}{a} \mathrm{sin}(a p_\mu/2) = \begin{cases} p_\mu + \mathcal{O}(a^2) & \text{for } a p_\mu \approx 0\\ 2/a & \text{for } a p_\mu \approx \pi \end{cases} \end{split}$$

- at physical momenta: O(a) modification
- at doubler momenta: $O(a^{-1})$ mass
- $\{\gamma_5, M(p)\} \neq 0$ even at $m = 0 \Rightarrow$ chiral symmetry broken by cutoff
- recovered in the continuum limit up to O(a) violations of Ward identities if we tune $am = am_c(g_0) \neq 0$
- value $r \neq 0$ irrelevant for continuum limit (but enters in counterterms)
- r = 1 standard

Worked example, trivial but explicit...

...for $a \to 0, T, L \to \infty$ and all that... free Wilson fermion, first a, L, T finite, periodic with L, antiperiodic with T (1/T = temperature)

$$\breve{\psi}(x_0, \vec{p}) = a^3 \sum_{\vec{x}} e^{-i\vec{p}\cdot\vec{x}} \psi(x), \quad \breve{\psi}(x_0, \vec{p}) = \dots, \quad \text{time/momentum}$$

$$\langle \breve{\psi}(t,-\vec{p})\breve{\psi}(0,\vec{p})\rangle \sim \operatorname{tr}[\underbrace{\mathrm{e}^{-(T-t)\mathbb{H}}}_{\rightarrow|0\rangle\langle0|}c(-\vec{p})\mathrm{e}^{-t\mathbb{H}}c^{\dagger}(\vec{p})] \sim \exp[-E(\vec{p})t]$$

necessary: $\vec{p} \in \frac{2\pi}{L} \mathbb{Z}^3$

$$G(t, \vec{p}) = L^{-3} \langle \breve{\psi}(t, -\vec{p}) \breve{\psi}(0, \vec{p}) \rangle = \frac{1}{T} \sum_{p_0} e^{i p_0 t} \frac{-i \not p + M(p)}{\dot{p}^2 + M^2(p)}$$

 $p_0 = (2\pi/T)n_0, \quad n_0 = 1/2, 3/2, \dots, T/a - 1/2,$ Matsubara

exact summation (e.g. contour integral),

scalar: tr
$$G(t, \vec{p}) = 2 \frac{M - a\hat{\omega}^2/2}{(1 + aM)\hat{\omega}} \sinh(\omega(T/2 - t))/\cosh(\omega T/2)$$
 (0 < t < T)
• $\omega = \sqrt{m^2 + \vec{p}^2} + O(a), \quad \hat{\omega}, \hat{\omega} = \omega + O(a^2)$
• $M = m + \frac{a}{2}\hat{\vec{p}}^2 = m + O(a)$

send $a \rightarrow 0$:

$$\operatorname{tr} G(t, \vec{p}) = 2\frac{m}{\omega} \sinh(\omega(T/2 - t)) / \cosh(\omega T/2), \quad \omega = \sqrt{m^2 + \vec{p}^2}$$

send $T \to \infty$ [and $a \to 0$]

$$\operatorname{tr} G(t, \vec{p}) = 2 \frac{M - a\hat{\omega}^2/2}{(1 + aM)\hat{\omega}} \exp(-\omega t) \left[\rightarrow 2 \frac{m}{\omega} \exp(-\omega t) \right]$$

- $a \rightarrow 0$ convergence linear (\rightarrow improvement, see below)
- $T \rightarrow \infty$ convergence exponential
- the limits commute indeed

more lessons to be learnt:

for
$$\vec{p} = 0$$
: $\omega = m_R = a^{-1} \ln(1 + am) = m - \frac{1}{2}am^2 + O(a^2)$

- m_R is the pole-mass $\leftrightarrow \exp(-m_R t)$ and differs from bare m at O(a)
- if we eliminate $m \to m_R$, then also for $\vec{p} \neq 0$:

$$\omega = \sqrt{m_R^2 + \vec{p}^2} + \mathcal{O}(a^2)$$

• the ugly prefactor:

$$[1+am] \times \frac{M-a\hat{\omega}^2/2}{(1+aM)\hat{\omega}} = \frac{m_R}{\sqrt{m_R^2 + \vec{p}^2}} + \mathcal{O}(a^2)$$

overall upshot:

$$-Z^{-1}L^{-3}\langle \breve{\psi}(0,\vec{p})\breve{\psi}(t,-\vec{p}\rangle = \frac{m_R}{\omega}\sinh(\omega(T/2-t))/\cosh(\omega T/2) + \mathcal{O}(a^2)$$
$$Z^{-1} = 1 + am = \text{wavefunction `renormalization'}$$

Symanzik O(a) improvement

we have just encountered an example of it:

renormalization	improvement
action: all terms up to $D = 4$	action: all terms up to $D = 5$
compatible with symmetries	compatible with symmetries
eliminate divergencies from	eliminate $O(a)$ terms from
relations between physical	relations between physical
quantities	quantities

we had the free theory only!

- $m \to m_R \text{ or } m \,\overline{\psi}\psi \to m(1 + \frac{1}{2}am) \,\overline{\psi}\psi$, then $m_{\text{pole}} = m + \mathcal{O}(a^2)$
- $\psi \rightarrow Z^{-1/2} \psi$
- also in interacting QCD [scope of a proof: all orders PT]
- renormalization- and improvement constants are needed NP (at least in principle)
- they can (and should!) be determined with finite $T, L \rightarrow SF$
- equally nontrivial as renormalizability

Staggered fermions with and without rooting

'naive' fermions:

$$S[\overline{\psi}, \psi] = a^4 \sum_x \overline{\psi} (\gamma_\mu \tilde{D}_\mu + m) \psi \quad \rightarrow 16 \text{ species}$$
$$(\tilde{D}_\mu \psi)(x) = \frac{1}{2} \left[U(x, \mu) \psi(x + \hat{\mu}) - U^{\dagger}(x - \hat{\mu}, \mu) \psi(x - \hat{\mu}) \right] \quad (a = 1 \text{ here})$$
$$S = S_m + \frac{1}{2} \sum_{x, \mu} \left\{ \overline{\psi} (x) \gamma_\mu U(x, \mu) \psi(x + \hat{\mu}) - \overline{\psi} (x + \hat{\mu}) \gamma_\mu U^{\dagger}(x, \mu) \psi(x) \right\}$$

'spin-diagonalization', $x = (x_0, x_1, x_2, x_3)$, $x_\mu \equiv x_\mu/a$ integer

$$\begin{split} \psi(x) &\to \gamma_0^{x_0} \gamma_1^{x_1} \gamma_2^{x_2} \gamma_3^{x_3} \psi(x), \quad \overline{\psi}(x) \to \overline{\psi}(x) \gamma_3^{x_3} \gamma_2^{x_2} \gamma_1^{x_1} \gamma_0^{x_0} \\ \text{the} \ \Rightarrow \end{split}$$

$$\overline{\psi}(x)\gamma_{\mu}U\psi(x+\hat{\mu}) \rightarrow \eta_{\mu}(x)\overline{\psi}(x)U\psi(x+\hat{\mu})$$

 $\eta_0(x) = 1, \quad \eta_1(x) = (-1)^{x_0}, \quad \eta_2(x) = (-1)^{x_0 + x_1}, \quad \eta_3(x) = (-1)^{x_0 + x_1 + x_2}$

- now $\eta_{\mu}(x)\overline{\psi}(x)U\psi(x+\hat{\mu}) = \text{same term for all 4 spinor components}$
- erase 3/4 of them: 16 species $\rightarrow 4$ species $(4 \rightarrow 2 \text{ in } D = 2)$

- field $U(x, \mu)$ translation invariance $x \to x + a\hat{\mu}$
- field $\psi(x)$ translations $x \to x + 2a\hat{\mu}$ because of 'staggered' $\eta_{\mu}(x)$
- $\psi, \overline{\psi}$ have only one component per site
- 4 spinor fields 'spread out' over the 16 sites of a 4D hypercube
- translations $x \to x + a\hat{\mu} \leftrightarrow \text{discrete subgroup of (broken) SU(4)}_{\text{taste}}$

Transformation, $U(1) \times U(1)$:

$$\psi(x) \to e^{i\alpha + i\beta\eta_5(x)}\psi(x), \quad \overline{\psi}(x) \to e^{-i\alpha + i\beta\eta_5(x)}\overline{\psi}(x)$$
$$\eta_5(x) = (-1)^{x_0 + x_1 + x_2 + x_3}$$

- α : fermion number
- β : only a symmetry for $m = 0 \ [\overline{\psi}\psi(x) \to e^{i2\beta\eta_5(x)}\overline{\psi}\psi(x)]$
- 'remnant chiral symmetry'
- sufficient to protect (distinguish by symmetry incl. cutoff) m = 0
- remember: Wilson $m_c(g_0)$ fine tuning for chiral point

idea A: use taste as flavor

- 4 'naturally degenerate' flavours not ideal
 - \circ 1977 Banks et al.: Hamiltonian, only 2 'Kogut-Susskind' tastes
- mixing of broken taste and space \Rightarrow big mess to build operators to 'tickle' well-defined quantum numbers (clear for Wilson)

more recent idea B, rooting:

$$\int D\psi D\overline{\psi} \,\mathrm{e}^{-\sum_{x} \overline{\psi} \,M[U]\psi} = \det M[U] \to \left(\det M[U]\right)^{1/4}$$

 \rightarrow one flavor, independent *m*, problem:

- predictive power of QFT, universality of critical points, artefacts only $\propto (am_{\rm phys.})^2$, depend on:
- local action/Hamiltonian (strict or exponentially decaying coefficients), a = 'size' of the bare action
- although in simulations we (almost) always use det M[U] (nonlocal F[U]) the existence of the local-action integral is relevant

$$\left(\det \mathbf{M}[U]\right)^{1/4} = \int D \psi D \overline{\psi} \, \mathrm{e}^{-\sum_{x} \overrightarrow{\psi} X[U] \psi}$$

Twisted mass fermions

Wilson:

$$D_W(m) = (\gamma_\mu \tilde{D}_\mu + m - \frac{a}{2} D_\mu D_\mu^*), \quad m > m_c(g_0)$$

Although the Grassmann integral (and det) on any finite lattice

$$\int D\psi D\overline{\psi} \,\mathrm{e}^{-\sum_x \overline{\psi} D_W \psi}$$

is a polynomial in the elements of the matrix D_W , standard methods spend all their time with *inverting* D_W in the *fluctuating* $U(x, \mu)$

In the continuum $\not\!\!\!D + m$ has eigenvalues $i\lambda + m$, never 0 if m > 0,

- nothing strictly protects D_W from zero EVs at $m > m_c$
- this is an article in the sense that for $\lim_{a\to 0} \operatorname{at} m_{\pi} > 0$ this problem eventually goes away ('measure zero' (?) = does not occur in simulations of ≤ 10 yrs duration?..)
- problem in practice

one way out:

- consider a degenerate doublet, set $m = m_c$ (simplified..)
- but introduce a different mass term:

 $D_W(m_c) 1_{\rm iso} + i\mu\gamma_5 \tau_3 \quad \Rightarrow \det(D_W(m_c) 1 + i\mu\gamma_5\tau_3) = \det(D_W^{\dagger} D_W + \mu^2)$

- in the continuum $i\mu\gamma_5 \tau_3$ could be transformed into a normal mass term
- not on the lattice \Rightarrow different regularization, should have the same continuum limit
- different counter term structure, seems advantageous to study certain 4-fermion composite operators in QCD
- simplifications in Symanzik O(a) improvement
- cutoff breaks Isospin, Goldstones split up (a bit like taste..)

Ginsparg-Wilson-Neuberger fermions

No go theorem:

• we cannot have $\{\gamma_5, \not D_{\text{discretized}}\} = 0$ without doubling under reasonable assuptions

the long forgotten Ginsparg Wilson relation had replaced this by

$$\{\gamma_5, \not\!\!D\} = a \not\!\!D \gamma_5 \not\!\!D \quad \Rightarrow \quad \{\gamma_5, \not\!\!D^{-1}(x, y)\} = a \underbrace{\gamma_5 a^{-4} \delta_{x, y}}_{\text{contact term}}$$

Neuberger realization:

$$D = a^{-1} \{ 1 - A(A^{\dagger}A)^{-1/2} \}, \quad A = 1 - a D_W(-s)$$

- obeys GW (simple algebra)
- local (not ultralocal, though)
- spectrum on a circle, with a massterm added it is protected
- the mere application requires $(A^{\dagger}A)^{-1/2} \rightarrow$ ultraexpensive in HMC...

Lüscher modified chiral symmetry

$$\delta\psi = \varepsilon\gamma_5(1 - \frac{1}{2}a\not\!\!\!D)\psi, \quad \delta\overline{\psi} = \varepsilon\overline{\psi}\left(1 - \frac{1}{2}a\not\!\!\!D\right)\gamma_5$$

• is an exact symmetry of
$$a^4 \sum_x \overline{\psi} \not\!\!\!D \psi$$

• if $\not\!\!D$ obeys Ginsparg Wilson

there are more fermion discretizations

- domain wall (chiral fermions from 5D)
- various of the above together with various kinds of
- smearing [plug links averaged in a gauge-covariant way into the fermion matrix]

critical remark:

there are few studies significantly varying the cutoff a [and nothing else at the same time] to check, if we are talking about continuum physics...

Concluions

• let's have coffee.....