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Role of the functional integral

(Plen)pl@e)plen) =5 [DpeWlp(ar)p(aa)-plan)

Formal:

infinite Euclidean space time (Wick — Minkowski)
Feynman rules from S|p| — all orders PT
o depends on split S[¢] = So|[¢]+ g0S1[p], So Gaussian

o regularization (D+#4, u,...), renormalization (g9 — ¢gg, ...), limit
(D—4,...)

exists (renormalizability, finite correlations): known to all orders PT
similar for gauge fields, fermions, ..., standard model
= coeflicients of |[expected| asymptotic expansion in gg:
lswea ~
truth — Ekzot Ck(gR)k| X (QR)lsweale as gr— 0
o a priori limited precision and limited sweat

finite gr: no convergence, c; useful only up to some order
[ De... has never been defined, PT of what? NP contributions?



(p(z1)p(w2) - 0(T0)) Z%/Dsoe‘smsO(xl)sO(ﬂsz)---cp(xn)

Lattice: define [ De... as a limit of finite dimensional integrals

e as Feynman did for QM = QFT with D=1

e finite volume V and finite spacing a

e evaluate exactly (if possible) or numerically or PT-expand

e in the end ¢ — 0 (and usually also L — c0) is necessary and difficult
lattice: = (o, 1, T2, x3) =an, € aZ* [z] =[a] =cm
torus:  (x) T-periodic in zg, L-periodic in 1 23 T'/a, L/a integer

integrate over independent fields in volume V =TL3

/Dgp....zg /_O:O do(z)....
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Y —fold

a

S]] discretized. 0, — difference quotient, e.g. nearest neighbour

continuum limit = critical point: universality
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Scales on the lattice

e «a: UV-cutoff; L, T:IR-cutoft; phys. scale: mass m ~ decay 2-point fct.
e it is usually assumed(?) that limits a — 0 and T', L — oo commute
e sometimes: am — 0 at m L =4, m'I['= # fixed: finite size scaling limit
e exists, universal under the same renormalization (counter terms)
e therefore: finite size effects = predictions of the continuum theory

o realizable: finite 7', Casimir situations, 7

e special case: mT finite, m L = oo: finite temperature in oo volume

e limit L — oo reached up to exp(—mL)=mL =5 usually okay

e limit a — 0 reached up to (am)™, n=1o0r2 = more problematic



Discretization of gauge fields
gauge-covariant derivative (continuum):

e—0 | =~~~

p.trans.

Dy = 0y -+ Ay = lim 1[ GoAn (i + ) — ()

has curvature

(eisAM(a:)eﬁA,,(x—i—a/l) . ez’dA,,(x)eisAM(x—i—&?))w ~ (eiséFﬂy(x) o 1)¢

gauge invariant action

S[A,] = / d* St (FuFu)



Lattice:

smallest parallel transport: x « x + a/i, nearst neighbor
etv4n - U(x, 1), algebra — in group SU(3), living on links

smallest measure of curvature, Wilson action:

R(x, p,v)=U(z, ))U(x+ap,v)=Ul(z,v)U(x+av, p)#1

swl=~ S w(®ERY, z=]] /dUe—Sm
€L, H

2
90 z. <
N~ .
plaquettes links



e continuum limit at g5 — 0 < asymptotic freedom
e confinement of static quarks « area decay of Wilson loop observable

e string tension vanishes in PT, trivial to show analytically in the
strong coupling expansion valid for large lattice spacing
(#£continuum limit)

e very precise numerical ‘proof’ close to the continuum (Yang Mills)

Discretization of fermions (quarks)

continuum, T'= L = oo, Grassmann:

ST, ] = /dw B+m)b, D=vDp v} =26, 0= (1)

free, D, =0,

T o) = [ e

pole < particle: (—iE,P)%?=—m? — E?=p2+m?
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lattice, naive, T'= L = oc:

ST 01 =a* 3 T (10 + m)o, Butp = 5[0+ ap) — (e — aj)

~

e 0, symmetric —.J antihermitian

T/a 4 o
d p eip-a: Zp_l_m

— _ note: momenta cut off!
(2m)4 p2+m?

() (0)) = /

—m/a

o 1 .
p,==sin(ap,)=pu(l—a’*p;/6+....)

a

pole: sin?(4

1 ol )+ sin?( a — —a’m?=>
small) Zk ( "pk)

small
B2 = (52 + m)[1 — a2(2 +m?)/3] —a2/3 )" ph+O(a’)
k
but also (doubler):

2,2
sin?(i aE 4 ) —|—Z sin?( apy £ 7)=—a’m

small small

—> 16 fermions appear in loops



Wilson fermions

modify the action:

SIP . ¢)=a* Y & (yudutm —ag 0,0, ),

Laplacian

T/a d*p ip-a:_iﬁ_FM(p)

— ¢ ~
—m/a (27T)4 p2+M2(p)
T L2, p.+0(a?) for ap,~0
M — —p2 = — 2) = H 12
(p)=m+azp?  p,=_—sin(ap,/2) {2/a for ap,~

e at physical momenta: O(a) modification
e at doubler momenta: O(a~!) mass
e {5 M(p)}+#0 even at m =0 = chiral symmetry broken by cutoff

e recovered in the continuum limit up to O(a) violations of Ward iden-
tities if we tune am =am.(gg)=#0

e value r+0 irrelevant for continuum limit (but enters in counterterms)

e =1 standard



Worked example, trivial but explicit...

...for a— 0, T", L — oo and all that... free Wilson fermion, first a, L,T" finite,
periodic with L, antiperiodic with T' (1/7T = temperature)

U (zo, B) —a,3Ze PZ(x), P (x9,P)=...., time/momentum

(W (t,— F)¥ (0, 7)) ~trle” T~ e(— Fe™ el (p)] ~ exp[ — E(p)1]
50

L2
necessary: p € %Zg’

G.5) =L = 7)F 0P =7 T ¢ L

po= 27w /T)nyg, mno=1/2,3/2,...,T/a—1/2, Matsubara

exact summation (e.g. contour integral),
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M —aw?/2
(1+aM)w

e w=yvm?*+752+0(a), &, =w+0(a?

a 52

e M=m+5p"=m+0(a)

scalar: tr G(t,p) =2 sinh(w(T/2—t))/cosh(wT/2) (0<t<T)

send a — O:

trG(t, ) = 2% sinh(w(T/2 —1))/cosh(wT'/2), w=+/m2+ p2

send T'— oo |and a — 0]

M —aw?/2

tI‘G(t’m:2(1+aM)cf>

exp( — wt)[ — 2% exp( — wt)}

e a— 0 convergence linear ( — improvement, see below)
e T'— 00 convergence exponential

e the limits commute indeed
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more lessons to be learnt:

for p = 0: w:mR:a_lln(1+am):m—%am2+0(a2)

e mp is the pole-mass < exp( —mpgt) and differs from bare m at O(a)

e if we eliminate m — mpg, then also for p+0:

w=/mh+p2+0(a’)
e the ugly prefactor:

M —ab?/2 mp

L am X e = g O
overall upshot:
— Z7 L3 (0, 7)) (t, — ) =" Lsinh(w(T/2 — 1)) /cosh(wT'/2) + O(a?)

w

71 =14 am = wavefunction ‘renormalization’
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Symanzik O(a) improvement

we have just encountered an example of it:

renormalization improvement

action: all terms up to D =4 | action: all terms up to D=5
compatible with symmetries |compatible with symmetries
eliminate divergencies from |eliminate O(a) terms from
relations between physical | relations between physical
quantities quantities

we had the free theory only!
® m—mpgor mzﬁbﬁm(l—i—%am) Yp, then myo1e =m + O(a?)
o« Y Z W%y
e also in interacting QCD [scope of a proof: all orders PT]|

e renormalization- and improvement constants are needed NP (at least
in principle)

e they can (and should!) be determined with finite T, L — SF

e equally nontrivial as renormalizability
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Staggered fermions with and without rooting

‘naive’ fermions:
Sy, Y] = a4z D (YD +m)e — 16 species
(D) (@) = 5[Ule, ma+ 4) ~ Ut — i, p)(w — )] (a=1here)
S =5m+ % Z {J(@%&U(CE: (e + i) =P (z+ i)y.U N (z, N>¢($)}
,

‘spin-diagonalization’, z = (xo, 21, x2, 3), ©,=x,/a integer

V(x) =525 (x), U (2) = ¥ (2)5 39526 °
the =

O (2)7,00 (2 + f2) = 1) (2)U(a + )
mo(@) =1, mi(z)=(—=1)%, no(z)=(—1)20+71 pa(z)=(—1)ToFzi+e:

e now 7,(x)Y (x)Uy(x+ (i) = same term for all 4 spinor components

e crase 3/4 of them: 16 species — 4 species (4 —2 in D =2)
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field U(x, 1) translation invariance x — = + afi

field 1 (x) translations x — x + 2ai because of ‘staggered’ n,,(x)
1,1 have only one component per site

4 spinor fields ‘spread out’ over the 16 sites of a 4D hypercube

translations x — = + afi < discrete subgroup of (broken) SU(4)taste

Transformation, U(1) x U(1):

@b(%) — eia—i—iﬁ%(w)w(aﬁ), J(x) N e_"'o‘ﬂﬁ%(a/‘)ﬁ(x)
ns(x) = (— 1)rotritaatas

a: fermion number

B:only a symmetry for m=0 [¢)(z) — 2@ ) ()]

‘remnant chiral symmetry’

sufficient to protect (distinguish by symmetry incl. cutoff) m=0

remember: Wilson m.(go) fine tuning for chiral point
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idea A: use taste as flavor
e 4 ‘naturally degenerate’ flavours not ideal
o 1977 Banks et al.: Hamiltonian, only 2 ‘Kogut-Susskind’ tastes

e mixing of broken taste and space = big mess to build operators
to ‘tickle’ well-defined quantum numbers (clear for Wilson)

more recent idea B, rooting:

/D@DD?Ze‘Zw PMIULY — qet M[U] — (detM[U])"*

— one flavor, independent m, problem:

e predictive power of QFT, universality of critical points, artefacts
only o (ampnys.)?, depend on:

e local action/Hamiltonian (strict or exponentially decaying coeffi-
cients), a = ‘size’ of the bare action

e although in simulations we (almost) always use det M|U]| (nonlocal
F[U]) the existence of the local-action integral is relevant

(detM[U])1/4:/%JDJG—Z%ZX[UW
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Twisted mass fermions
Wilson:

~

a k
Dw(m)=(v,Dyp+m — §DuDu>a m > mc(go)

Although the Grassmann integral (and det) on any finite lattice
/ DyDi e Xa ¥ Pw

is a polynomial in the elements of the matrix Dy, standard methods spend
all their time with inverting Dy in the fluctuating U(x, )

In the continuum /) +m has eigenvalues i\ + m, never 0 if m >0,
e nothing strictly protects Dy, from zero EVs at m > m,

e this is an artefact in the sense that for lim,_.gat m, > 0 this problem
eventually goes away (‘measure zero’ (?7) = does not occur in simula-
tions of <10 yrs duration?..)

e problem in practice
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one way out:

consider a degenerate doublet, set m =m, (simplified..)

but introduce a different mass term:

Dy (me) liso +ipys 3 = det(Dyy (me)1 + ipysms) = det( DDy + 12)

in the continuum iuvys 73 could be transformed into a normal mass
term

not on the lattice = different regularization, should have the same
continuum limit

different counter term structure, seems advantageous to study certain
4-fermion composite operators in QCD

simplifications in Symanzik O(a) improvement

cutoff breaks Isospin, Goldstones split up (a bit like taste..)
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Ginsparg-Wilson-Neuberger fermions

No go theorem:

e we cannot have {75, D i..rotieq) = 0 without doubling under reason-
able assuptions

the long forgotten Ginsparg Wilson relation had replaced this by

{7, ﬁ} =aPvP = {75, ﬁ_l(l’a y)} = a\75a_4(5x;y

TV
contact term

Neuberger realization:
D=a"{1-AATA)"V/2} A=1-aDw(—s)

e obeys GW (simple algebra)
e local (not ultralocal, though)
e spectrum on a circle, with a massterm added it is protected

e the mere application requires (ATA)~1/2 — ultraexpensive in HMC...
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Liischer modified chiral symmetry

S =evs(1—saD), % =P (1—2aD)vs

e is an exact symmetry of a* Do v Dy
o if ) obeys Ginsparg Wilson
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there are more fermion discretizations
e domain wall (chiral fermions from 5D)
e various of the above together with various kinds of

e smearing [plug links averaged in a gauge-covariant way into the
fermion matrix]|

critical remark:
there are few studies significantly varying the cutoff a |and nothing else at
the same time| to check, if we are talking about continuum physics...
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Concluions

e let’s have coffee
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