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Rôle of the functional integral

〈ϕ(x1)ϕ(x2)� ϕ(xn)〉=
1

Z

∫

Dϕe−S[ϕ]ϕ(x1)ϕ(x2)� ϕ(xn)

Formal:

• infinite Euclidean space time (Wick →Minkowski)

• Feynman rules from S[ϕ] � all orders PT

◦ depends on split S[ϕ] =S0[ϕ] + g0SI[ϕ], S0 Gaussian

◦ regularization (D=4, µ,...), renormalization (g0→ gR,� ), limit
(D→ 4,� )

• exists (renormalizability, finite correlations): known to all orders PT

• similar for gauge fields, fermions, ..., standard model

• ⇒ coefficients of [expected] asymptotic expansion in gR:

• |truth−
∑

k=0
lsw e a t ck(gR)k| ∝ (gR)lsw e a t+1 as gR→ 0

◦ a priori limited precision and limited sweat

• finite gR: no convergence, ck useful only up to some order

•
∫

Dϕ� has never been defined, PT of what? NP contributions?
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〈ϕ(x1)ϕ(x2)� ϕ(xn)〉=
1

Z

∫

Dϕe−S[ϕ]ϕ(x1)ϕ(x2)� ϕ(xn)

Lattice: define
∫

Dϕ� as a limit of finite dimensional integrals

• as Feynman did for QM ≡ QFT with D= 1

• finite volume V and finite spacing a

• evaluate exactly (if possible) or numerically or PT-expand

• in the end a→ 0 (and usually also L→∞) is necessary and difficult

lattice: x= (x0, x1, x2, x3)= anµ∈ aZ
4 [x] = [a] = cm

torus: ϕ(x) T -periodic in x0, L-periodic in x1,2,3 T/a, L/a integer

integrate over independent fields in volume V =TL3

∫

Dϕ� .≡∏

x

∫

−∞

∞

dϕ(x)�
V

a4
−fold

� .
• S[ϕ] discretized. ∂µ→ difference quotient, e.g. nearest neighbour

• continuum limit = critical point: universality
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Scales on the lattice

• a: UV-cutoff; L, T : IR-cutoff; phys. scale: mass m∼ decay 2-point fct.

• it is usually assumed(?) that limits a→ 0 and T , L→∞ commute

• sometimes: am→ 0 at mL= #,mT = # fixed: finite size scaling limit

• exists, universal under the same renormalization (counter terms)

• therefore: finite size effects = predictions of the continuum theory

◦ realizable: finite T , Casimir situations, ?

• special case: mT finite, mL=∞: finite temperature in ∞ volume

• limit L→∞ reached up to exp(−mL)⇒mL≈ 5 usually okay

• limit a→ 0 reached up to (am)n, n= 1 or 2⇒more problematic
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Discretization of gauge fields

gauge-covariant derivative (continuum):

Dµψ= ∂µψ+ iAµψ= lim
ε→0

1

ε

[

eiεAµ�

p.trans.

ψ(x+ εµ̂)− ψ(x)

]

has curvature

(eiεAµ(x)eiδAν(x+εµ̂)− eiδAν(x)eiεAµ(x+δν̂ ))ψ≃ (eiεδFµν(x)− 1)ψ

gauge invariant action

S[Aµ] =

∫

d4x
1

2
tr (FµνFµν)
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Lattice:

• smallest parallel transport: x← x+ aµ̂, nearst neighbor

• eiaAµ→U(x, µ), algebra → in group SU(3), living on links

• smallest measure of curvature, Wilson action:

R(x, µ, ν)=U(x, µ)U(x+ aµ̂ , ν)−U(x, ν)U(x+ aν̂ , µ)≡1

S[U ] =
1

g0
2

∑

x,µ<ν�
plaquettes

tr(RR†), Z =
∏

x,µ

∫

�
links

dU e−S[U ]
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• continuum limit at g0
2→ 0↔ asymptotic freedom

• confinement of static quarks ↔ area decay of Wilson loop observable

• string tension vanishes in PT, trivial to show analytically in the
strong coupling expansion valid for large lattice spacing
(=continuum limit)

• very precise numerical ‘proof’ close to the continuum (Yang Mills)

Discretization of fermions (quarks)

continuum, T =L=∞, Grassmann:

S[ψ , ψ] =

∫

d4xψ (D+m)ψ, D= γµDµ, {γµ, γν}= 2δµν , γµ= (γµ)
†

free, Dµ= ∂µ:

〈ψ(x)ψ (0)〉=

∫

d4p

(2π)4
eip·x

− ip+m

p2 +m2

pole↔ particle: (− iE, pG )2 =−m2 →E2 = pG 2 +m2

7



lattice, naive, T =L=∞:

S[ψ , ψ] = a4
∑

x

ψ (γµ∂̃µ+m)ψ, ∂̃µψ=
1

2a
[ψ(x+ aµ̂)− ψ(x− aµ̂)]

• ∂̃µ symmetric → ∂̃ antihermitian

〈ψ(x)ψ (0)〉=

∫

−π/a

π/a d4p

(2π)4
eip·x

− i p̊ +m

p̊ 2 +m2
note:momenta cut off!

p̊ µ=
1

a

sin(apµ)= pµ(1− a2pµ
2/6 +� .)

pole: sin2(i aE�

small

) +
∑

k
sin2( apk�

small

)=− a2m2⇒

E2 = (pG 2 +m2)[1− a2(pG 2 +m2)/3]− a2/3
∑

k

pk
4 + O(a4)

but also (doubler):

sin2(i aE�

small

± π)+
∑

k

sin2( apk�
small

±π) =− a2m2

� 16 fermions appear in loops
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Wilson fermions

modify the action:

S[ψ , ψ] = a4
∑

x

ψ (γµ∂̃µ+m− a
r

2
∂µ∂µ

∗�

Laplacian

)ψ,

〈ψ(x)ψ (0)〉=

∫

−π/a

π/a d4p

(2π)4
eip·x

− i p̊ +M(p)

p̊ 2 +M2(p)

M(p)=m+ a
r

2
p̂2, p̂µ=

2

a
sin(apµ/2) =

{

pµ+ O(a2) for apµ≈ 0
2/a for apµ≈π

• at physical momenta: O(a) modification

• at doubler momenta: O(a−1) mass

• {γ5,M(p)}=0 even at m= 0 ⇒ chiral symmetry broken by cutoff

• recovered in the continuum limit up to O(a) violations of Ward iden-
tities if we tune am= amc(g0)=0

• value r=0 irrelevant for continuum limit (but enters in counterterms)

• r= 1 standard
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Worked example, trivial but explicit...

...for a→ 0, T , L→∞ and all that... free Wilson fermion, first a, L, T finite,
periodic with L, antiperiodic with T (1/T = temperature)

ψ̆(x0, pG ) = a3
∑

xG e−ipG ·xGψ(x), ψ̆ (x0, pG ) =� ., time/momentum

〈ψ̆(t,− pG )ψ̆ (0, pG )〉∼ tr[e−(T−t)H�
→|0〉〈0|

c(− pG )e−tHc†(pG )]∼ exp[−E(pG )t]

necessary: pG ∈ 2π

L
Z

3

G(t, pG ) =L−3〈ψ̆(t,− pG )ψ̆ (0, pG )〉=
1

T

∑

p0

eip0t
− i p̊ +M(p)

p̊ 2 +M2(p)

p0 = (2π/T )n0, n0 = 1/2, 3/2,� , T/a− 1/2, Matsubara

exact summation (e.g. contour integral),
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scalar: trG(t, pG )= 2
M − aω̂2/2

(1 + aM)ω̊
sinh(ω(T/2− t))/cosh(ωT/2) (0< t<T )

• ω= m2 + pG 2
√

+ O(a), ω̂ , ω̊ =ω+ O(a2)

• M =m+
a

2
pGˆ2

=m+ O(a)

send a→ 0:

trG(t, pG )= 2
m

ω
sinh(ω(T/2− t))/cosh(ωT/2), ω= m2 + pG 2

√

send T→∞ [and a→ 0]

trG(t, pG )= 2
M − aω̂2/2

(1 + aM)ω̊
exp(−ωt)

[

→ 2
m

ω
exp(−ωt)

]

• a→ 0 convergence linear (→ improvement, see below)

• T→∞ convergence exponential

• the limits commute indeed
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more lessons to be learnt:

for pG = 0: ω=mR= a−1ln(1 + am) =m−
1

2
am2 + O(a2)

• mR is the pole-mass↔ exp(−mRt) and differs from bare m at O(a)

• if we eliminate m→mR, then also for pG =0:

ω= mR
2 + pG 2

√

+ O(a2)

• the ugly prefactor:

[1 + am]×
M − aω̂2/2

(1 + aM)ω̊
=

mR

mR
2 + pG 2

√ + O(a2)

overall upshot:

−Z−1L−3〈ψ̆ (0, pG )ψ̆(t,− pG 〉= mR

ω
sinh(ω(T/2− t))/cosh(ωT/2)+ O(a2)

Z−1 = 1 + am=wavefunction renormalization8 ′
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Symanzik O(a) improvement

we have just encountered an example of it:

renormalization improvement

action: all terms up to D = 4
compatible with symmetries

action: all terms up to D= 5
compatible with symmetries

eliminate divergencies from
relations between physical
quantities

eliminate O(a) terms from
relations between physical
quantities

we had the free theory only!

• m→mR or mψψ→m(1 +
1

2
am) ψψ, then mpole =m+ O(a2)

• ψ→Z−1/2ψ

• also in interacting QCD [scope of a proof: all orders PT]

• renormalization- and improvement constants are needed NP (at least
in principle)

• they can (and should!) be determined with finite T , L→ SF

• equally nontrivial as renormalizability
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Staggered fermions with and without rooting
‘naive’ fermions:

S[ψ , ψ] = a4
∑

x

ψ (γµD̃µ+m)ψ → 16 species

(D̃µψ)(x) =
1

2

[

U(x, µ)ψ(x+ µ̂)−U †(x− µ̂ , µ)ψ(x− µ̂)
]

(a= 1 here)

S=Sm+
1

2

∑

x,µ

{

ψ (x)γµU(x, µ)ψ(x+ µ̂)− ψ (x+ µ̂)γµU †(x, µ)ψ(x)
}

‘spin-diagonalization’, x= (x0, x1, x2, x3), xµ≡xµ/a integer

ψ(x)→ γ0
x0γ1

x1γ2
x2γ3

x3ψ(x), ψ (x)→ ψ (x)γ3
x3γ2

x2γ1
x1γ0

x0

the ⇒

ψ (x)γµUψ(x+ µ̂)→ ηµ(x)ψ (x)Uψ(x+ µ̂)

η0(x) = 1, η1(x) = (− 1)x0, η2(x)= (− 1)x0+x1, η3(x) = (− 1)x0+x1+x2

• now ηµ(x)ψ (x)Uψ(x+ µ̂) = same term for all 4 spinor components

• erase 3/4 of them: 16 species → 4 species (4→ 2 in D= 2)

14



• field U(x, µ) translation invariance x→x+ aµ̂

• field ψ(x) translationsx→x+ 2aµ̂ because of ‘staggered’ ηµ(x)

• ψ, ψ have only one component per site

• 4 spinor fields ‘spread out’ over the 16 sites of a 4D hypercube

• translations x→ x+ aµ̂↔ discrete subgroup of (broken) SU(4)taste

Transformation, U(1)×U(1):

ψ(x)→ eiα+iβη5(x)ψ(x), ψ (x)→ e−iα+iβη5(x)ψ (x)

η5(x) = (− 1)x0+x1+x2+x3

• α: fermion number

• β: only a symmetry for m= 0 [ψψ(x)→ ei2βη5(x)ψψ(x)]

• ‘remnant chiral symmetry’

• sufficient to protect (distinguish by symmetry incl. cutoff) m= 0

• remember: Wilson mc(g0) fine tuning for chiral point
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idea A: use taste as flavor

• 4 ‘naturally degenerate’ flavours not ideal

◦ 1977 Banks et al.: Hamiltonian, only 2 ‘Kogut-Susskind’ tastes

• mixing of broken taste and space ⇒ big mess to build operators
to ‘tickle’ well-defined quantum numbers (clear for Wilson)

more recent idea B, rooting:

∫

DψDψ e−
P

x
ψM [U ]ψ= detM [U ]→ (detM[U ])

1/4

→ one flavor, independent m, problem:

• predictive power of QFT, universality of critical points, artefacts
only ∝ (amphys.)

2, depend on:

• local action/Hamiltonian (strict or exponentially decaying coeffi-
cients), a= ‘size’ of the bare action

• although in simulations we (almost) always use det M [U ] (nonlocal
F [U ]) the existence of the local-action integral is relevant

(detM[U ])
1/4 =

∫

DψDψ e−

P
x
ψX[U ]ψ
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Twisted mass fermions
Wilson:

DW(m)= (γµD̃µ+m−
a

2
DµDµ

∗), m>mc(g0)

Although the Grassmann integral (and det) on any finite lattice
∫

DψDψ e−

P
x
ψDWψ

is a polynomial in the elements of the matrix DW , standard methods spend
all their time with inverting DW in the fluctuating U(x, µ)

In the continuum D+m has eigenvalues iλ+m, never 0 if m> 0,

• nothing strictly protects DW from zero EVs at m>mc

• this is an artefact in the sense that for lima→0 at mπ> 0 this problem
eventually goes away (‘measure zero’ (?) = does not occur in simula-
tions of 6 10 yrs duration?..)

• problem in practice
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one way out:

• consider a degenerate doublet, set m=mc (simplified..)

• but introduce a different mass term:

DW(mc)1iso + iµγ5 τ3 ⇒ det(DW(mc)1 + iµγ5τ3) = det(DW
† DW + µ2)

• in the continuum iµγ5 τ3 could be transformed into a normal mass
term

• not on the lattice ⇒ different regularization, should have the same
continuum limit

• different counter term structure, seems advantageous to study certain
4-fermion composite operators in QCD

• simplifications in Symanzik O(a) improvement

• cutoff breaks Isospin, Goldstones split up (a bit like taste..)
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Ginsparg-Wilson-Neuberger fermions

No go theorem:

• we cannot have {γ5, Ddiscretized} = 0 without doubling under reason-
able assuptions

the long forgotten Ginsparg Wilson relation had replaced this by

{γ5, D}= aDγ5D ⇒ {γ5, D
−1

(x, y)}= aγ5a
−4δx,y�

contact term

Neuberger realization:

D= a−1{1−A(A†A)−1/2}, A= 1− aDW(− s)

• obeys GW (simple algebra)

• local (not ultralocal, though)

• spectrum on a circle, with a massterm added it is protected

• the mere application requires (A†A)−1/2 → ultraexpensive in HMC...
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Lüscher modified chiral symmetry

δψ= εγ5(1−
1

2
aD)ψ, δψ = εψ (1− 1

2
aD)γ5

• is an exact symmetry of a4
∑

x
ψ Dψ

• if D obeys Ginsparg Wilson
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there are more fermion discretizations

• domain wall (chiral fermions from 5D)

• various of the above together with various kinds of

• smearing [plug links averaged in a gauge-covariant way into the
fermion matrix]

critical remark:
there are few studies significantly varying the cutoff a [and nothing else at
the same time] to check, if we are talking about continuum physics...
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Concluions

• let’s have coffee........
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