Three Questions

Results 00 00 000 Conclusion

Flavour-blind MSSM at large tan β FCNC beyond the decoupling limit

Lars Hofer Ulrich Nierste Dominik Scherer

Institut für Theoretische Teilchenphysik

SFB-TR9 meeting - march 2009

$tan \beta$ in the MSSM					
introduction. Large tan beta	mee questions	00 00 000	Conclusion		
Introduction: Large tan beta	Three Questions	Results	Conclusion		

ιa

• MSSM contains two Higgs doublets: H_u , H_d (2-Higgs-Doublet model, Type II)

Introduction: Large tan beta	Three Questions	Results 00 000	Conclusion
	ton 0 in the MCC		

tan β in the MSSM

- MSSM contains two Higgs doublets: H_u, H_d (2-Higgs-Doublet model, Type II)
- both doublets have a vacuum expectation value: vu, vd

$$v_u^2 + v_d^2 = \frac{2m_w^2}{g^2}$$
 , $\frac{v_u}{v_d} = \tan\beta = ?$

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion
		<i>.</i>	

tan β in the MSSM

- MSSM contains two Higgs doublets: H_u, H_d (2-Higgs-Doublet model, Type II)
- both doublets have a vacuum expectation value: vu, vd

$$v_u^2 + v_d^2 = \frac{2m_w^2}{g^2}$$
 , $\frac{v_u}{v_d} = \tan \beta = ?$

• interesting case for Yukawa unification: $y_b \approx y_t \approx 1$,

then
$$\tan \beta = \frac{v_u}{v_d} \sim \mathcal{O}\left(\frac{m_t}{m_b}\right) \sim \mathcal{O}(50)$$

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion
	tan β -enhanceme	ent	

• consider tree-level amplitude with suppression by v_d

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion
	tan β -enhancem	ent	

- consider tree-level amplitude with suppression by v_d
- one-loop correction possibly contains v_u instead

[Hall,Rattazzi,Sarid; Blazek,Pokorski,Raby]

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion

tan β -enhancement

- consider tree-level amplitude with suppression by v_d
- one-loop correction possibly contains v_u instead

[Hall,Rattazzi,Sarid; Blazek,Pokorski,Raby]

well-known example:

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion

tan β -enhancement

- consider tree-level amplitude with suppression by v_d
- one-loop correction possibly contains v_u instead

[Hall,Rattazzi,Sarid; Blazek,Pokorski,Raby]

well-known example:

Introduction: Large tan beta	Three Questions	Results 00 000	Conclusion

tan β -enhancement

- consider tree-level amplitude with suppression by v_d
- one-loop correction possibly contains v_u instead

[Hall,Rattazzi,Sarid; Blazek,Pokorski,Raby]

well-known example:

How should we account for such O(1) corrections?

Introduction: Large tan beta	
------------------------------	--

Three Questions

Results

Conclusion

Accounting for tan β -enhanced corrections

1. Effective Lagrangian in the decoupling limit

[Babu,Kolda; Buras,Chankowski,Rosiek,Slawianowska; Dedes,Pilaftsis]

 assume M_{SUSY} >> M_{EW} and integrate out SUSY fields, keep only Higgs and SM fields, e.g.

Introduction: Large tan beta	Three Questions	Results	Co
		00	
		00	
		000	

Accounting for tan β -enhanced corrections

1. Effective Lagrangian in the decoupling limit

[Babu,Kolda; Buras,Chankowski,Rosiek,Slawianowska; Dedes,Pilaftsis]

 assume M_{SUSY} >> M_{EW} and integrate out SUSY fields, keep only Higgs and SM fields, e.g.

2. Calculation in the full MSSM beyond decoupling (our work)

• $\tan \beta$ -enhanced mass corrections from finite self-energies:

resummation to all orders (loop · tan β)ⁿ

[Carena, Garcia, Nierste, Wagner]

Introduction: Large tan beta	Three Questions	Results	Conclusion
		00	
		000	

Introduction: Large tan beta	Three Questions	Results	Conclusion
		00 00 000	

Introduction: Large tan beta	Three Questions	Results	Conclusion
		00 00 000	

Introduction: Large tan beta	Three Questions	Results	Conclusion
		00	
		000	

 Renormalize tan β-enhanced corrections on-shell Example: Chargino self-energy

• by recursion: $\delta y_b^{(n)} = y_b^{\text{ren}} (-\Delta_b^{\widetilde{\chi}^{\pm}})^{n+1}$

Introduction: Large tan beta	Three Questions	Results	Conclusion
		00 00 000	

- by recursion: $\delta y_b^{(n)} = y_b^{\text{ren}} (-\Delta_b^{\widetilde{\chi}^{\pm}})^{n+1}$
- resummation:

$$y_b^{\text{bare}} = y_b^{\text{ren}} + \sum_{n=0}^{\infty} \delta y_b^{(n)} = \frac{y_b^{\text{ren}}}{1 + \Delta_b^{\tilde{\chi}^{\pm}}} = \frac{m_b}{v_d(1 + \Delta_b^{\tilde{\chi}^{\pm}})}$$

Introduction: Large tan beta

Three Questions

Results 00 00 000 Conclusion

Motivation: Why go beyond decoupling limit?

• $M_{\rm SUSY} \sim M_{\rm EW}$ is natural

Motivation: Why go beyond decoupling limit?

- $M_{\rm SUSY} \sim M_{\rm EW}$ is natural
- validity of the assumption $M_{\rm SUSY} \gg M_{\rm EW}$ unclear, test accuracy

Motivation: Why go beyond decoupling limit?

- $M_{\rm SUSY} \sim M_{\rm EW}$ is natural
- validity of the assumption $M_{\rm SUSY} \gg M_{\rm EW}$ unclear, test accuracy
- study tan β-enhanced effects in couplings of SUSY particles (inaccessible in eff. Lagrangian approach since SUSY particles are integrated out)

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion
	Three Question	าร	

Going beyond the decoupling limit:

a) scheme dependence of bottom-mass resummation?

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion
	Three Question	IS	

Going beyond the decoupling limit:

- a) scheme dependence of bottom-mass resummation?
- b) generalization to flavour non-diagonal case?

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion
	Three Question	IS	

Going beyond the decoupling limit:

- a) scheme dependence of bottom-mass resummation?
- b) generalization to flavour non-diagonal case?
- c) new effects in FCNC processes?

Results: a) Scheme dependence in mass renormalization

 tan β-enhanced corrections to m_b depend on m_b itself and some parameters from sbottom-mixing

Results: a) Scheme dependence in mass renormalization

- tan β-enhanced corrections to m_b depend on m_b itself and some parameters from sbottom-mixing
- sbottom-mixing can (but need not) be expressed by m_b and SUSY-breaking parameters
 - \rightarrow some freedom to choose...

Results ●0 ○○

Results: a) Scheme dependence in mass renormalization

- tan β-enhanced corrections to m_b depend on m_b itself and some parameters from sbottom-mixing
- sbottom-mixing can (but need not) be expressed by m_b and SUSY-breaking parameters
 - \rightarrow some freedom to choose...

• to clarify things, write $\Delta_b = \Delta_b^{\tilde{g}} + \Delta_b^{\tilde{\chi}^{\pm}} + \Delta_b^{\tilde{\chi}^{0}}$

Results: a) Scheme dependence in mass renormalization

- tan β-enhanced corrections to m_b depend on m_b itself and some parameters from sbottom-mixing
- sbottom-mixing can (but need not) be expressed by m_b and SUSY-breaking parameters
 - \rightarrow some freedom to choose...

- to clarify things, write $\Delta_b = \Delta_b^{\tilde{g}} + \Delta_b^{\tilde{\chi}^{\pm}} + \Delta_b^{\tilde{\chi}^{0}}$
- from Feynman diagrams:
 - gluino contribution depends on θ_{˜b}, φ_{˜b}, m_{˜b1}, m_{˜b2}
 - chargino contribution depends on m_b from Yukawa coupling
 - neutralino contribution depends on m_b and $\theta_{\tilde{b}}, \varphi_{\tilde{b}}, m_{\tilde{b}_1}, m_{\tilde{b}_2}$

Results ○● ○○

Results: a) Scheme dependence in mass renormalization

Renormalization depends on choice of input parameters:

i) expressing Δ_b by μ , tan β , $m_{\tilde{b}_1}$, $m_{\tilde{b}_2}$: (simplest formula)

$$y_b = \frac{m_b}{v_d(1 + \Delta_b^{\tilde{g}} + \Delta_b^{\tilde{\chi}^{\pm}} + \Delta_b^{\tilde{\chi}^{0}})} = \frac{m_b}{v_d(1 + \epsilon_b \tan \beta)}$$

Results ○● ○○○

Results: a) Scheme dependence in mass renormalization

Renormalization depends on choice of input parameters:

i) expressing Δ_b by μ , tan β , $m_{\tilde{b}_1}$, $m_{\tilde{b}_2}$: (simplest formula)

$$y_b = \frac{m_b}{v_d(1 + \Delta_b^{\tilde{g}} + \Delta_b^{\tilde{\chi}^{\pm}} + \Delta_b^{\tilde{\chi}^0})} = \frac{m_b}{v_d(1 + \epsilon_b \tan \beta)}$$

ii) expressing Δ_b by $\theta_{\tilde{b}}, \varphi_{\tilde{b}}, m_{\tilde{b}_1}, m_{\tilde{b}_2}$: (directly from diagrams)

$$y_b = \frac{m_b(1 - \Delta_b^{\tilde{g}})}{v_d(1 + \Delta_b^{\tilde{\chi}^{\pm}} + \Delta_b^{\tilde{\chi}^0})}$$

Results ○● ○○

Results: a) Scheme dependence in mass renormalization

Renormalization depends on choice of input parameters:

i) expressing Δ_b by μ , tan β , $m_{\tilde{b}_1}$, $m_{\tilde{b}_2}$: (simplest formula)

$$y_b = \frac{m_b}{v_d(1 + \Delta_b^{\tilde{g}} + \Delta_b^{\tilde{\chi}^{\pm}} + \Delta_b^{\tilde{\chi}^0})} = \frac{m_b}{v_d(1 + \epsilon_b \tan \beta)}$$

ii) expressing Δ_b by $\theta_{\tilde{b}}, \varphi_{\tilde{b}}, m_{\tilde{b}_1}, m_{\tilde{b}_2}$: (directly from diagrams)

$$y_b = \frac{m_b(1 - \Delta_b^{\tilde{g}})}{v_d(1 + \Delta_b^{\tilde{\chi}^{\pm}} + \Delta_b^{\tilde{\chi}^0})}$$

iii) expressing Δ_b by μ,tan β, m_{b̃}, m_{δ̃} (popular for numerics) → direct resummation impossible, only iterative use of formula i) works

Results: b) Resummation of flavour non-diagonal self-energies

• resummation formula for tan β -enhanced *flavour-diagonal* self-energies made clear

Results: b) Resummation of flavour non-diagonal self-energies

- resummation formula for tan β-enhanced flavour-diagonal self-energies made clear
- how can we account for the *flavour non-diagonal* analogon:

$$a_{L}, \overline{s_{L}} \bigoplus_{\tilde{u}, \tilde{c}, \tilde{t}} b_{R} = m_{b} \frac{\epsilon_{\text{FC}} \tan \beta}{1 + \epsilon_{b} \tan \beta} V_{tb}^{*} V_{ti} \qquad (i=d,s)$$

Results: b) Resummation of flavour non-diagonal self-energies

- resummation formula for tan β-enhanced flavour-diagonal self-energies made clear
- how can we account for the *flavour non-diagonal* analogon:

$$d_{L}, \overline{s_{L}} \bigoplus_{\tilde{u}, \tilde{c}, \tilde{t}}^{\tilde{\chi}^{\pm}} b_{R} = m_{b} \frac{\epsilon_{FC} \tan \beta}{1 + \epsilon_{b} \tan \beta} V_{tb}^{*} V_{ti} \qquad (i=d,s)$$

solution: absorb self-energies in matrix-valued field renormalization

$$\left(\begin{array}{c} d_L\\ s_L\\ b_L\end{array}\right)^{\text{bare}} = \left(1 + \frac{\delta Z^L}{2}\right) \left(\begin{array}{c} d_L\\ s_L\\ b_L\end{array}\right)$$

and likewise for right-handed fields

[similar approach by Buras, Chankowski, Rosiek, Slawianowska]

Results: b) Resummation of flavour non-diagonal self-energies

• $(\epsilon_{FC} \tan \beta)^n$ effects can be resummed to all orders. Yields

$$\begin{split} \frac{\delta Z_{bi}^{L}}{2} &= -\frac{\epsilon_{\rm FC} \tan \beta}{1 + (\epsilon_{b} - \epsilon_{\rm FC}) \tan \beta} V_{tb}^{*} V_{ti} \\ \frac{\delta Z_{bi}^{R}}{2} &= -\frac{m_{i}}{m_{b}} \left[\frac{\epsilon_{\rm FC} \tan \beta}{1 + (\epsilon_{b} - \epsilon_{\rm FC}) \tan \beta} \right. \\ &+ \frac{(1 + \epsilon_{b} \tan \beta) \epsilon_{\rm FC}^{*} \tan \beta}{(1 + \epsilon_{i}^{*} \tan \beta)(1 + (\epsilon_{b} - \epsilon_{\rm FC}) \tan \beta)} \right] V_{tb}^{*} V_{ti} \end{split}$$

Results: b) Resummation of flavour non-diagonal self-energies

• $(\epsilon_{FC} \tan \beta)^n$ effects can be resummed to all orders. Yields

$$\begin{split} \frac{\delta Z_{bi}^{L}}{2} &= -\frac{\epsilon_{\text{FC}} \tan \beta}{1 + (\epsilon_{b} - \epsilon_{\text{FC}}) \tan \beta} V_{tb}^{*} V_{ti} \\ \frac{\delta Z_{bi}^{R}}{2} &= -\frac{m_{i}}{m_{b}} \left[\frac{\epsilon_{\text{FC}} \tan \beta}{1 + (\epsilon_{b} - \epsilon_{\text{FC}}) \tan \beta} \right. \\ &+ \frac{(1 + \epsilon_{b} \tan \beta) \epsilon_{\text{FC}}^{*} \tan \beta}{(1 + \epsilon_{i}^{*} \tan \beta)(1 + (\epsilon_{b} - \epsilon_{\text{FC}}) \tan \beta)} \right] V_{tb}^{*} V_{ti} \end{split}$$

· this results in corrections to the CKM matrix

[Denner,Sack; Gambino,Grassi,Madricardo]

$$V^{\text{bare}} = \begin{pmatrix} V_{ud} & V_{us} & K^* V_{ub} \\ V_{cd} & V_{cs} & K^* V_{cb} \\ K V_{td} & K V_{ts} & V_{tb} \end{pmatrix} \quad , \quad K = \frac{1 + \epsilon_b \tan \beta}{1 + (\epsilon_b - \epsilon_{\text{FC}}) \tan \beta}$$

(numerically different from eff. Lagrangian approaches)

δZ^L_{ij} and δZ^R_{ij} yield counterterm Feynman rules for (s)quark vertices

 \longrightarrow inclusion of tan β -enhanced corrections to all orders

- δZ^L_{ij} and δZ^R_{ij} yield counterterm Feynman rules for (s)quark vertices
 - \longrightarrow inclusion of tan β -enhanced corrections to all orders
- some of them are FCNC known in decoupling limit:

[Hamzaoui,Pospelov,Toharia; Babu,Kolda;...]

here generalized to $M_{
m SUSY} \sim M_{
m EW}$

- δZ^L_{ij} and δZ^R_{ij} yield counterterm Feynman rules for (s)quark vertices
 - \longrightarrow inclusion of tan β -enhanced corrections to all orders
- some of them are FCNC known in decoupling limit:

[Hamzaoui,Pospelov,Toharia; Babu,Kolda;...]

$$d_i$$
 \longrightarrow H^0, A^0 d_j

here generalized to $M_{\rm SUSY} \sim M_{\rm EW}$

$$l_i \longrightarrow \tilde{g}, \tilde{\chi}^0$$

- some of them are new FCNC: *d̃_j* -
 - \rightarrow "flavour problem" even in flavour-blind MSSM?

- δZ_{ii}^L and δZ_{ii}^R yield counterterm Feynman rules for (s) quark vertices
 - \longrightarrow inclusion of tan β -enhanced corrections to all orders
- some of them are FCNC known in decoupling limit:

[Hamzaoui, Pospelov, Toharia; Babu, Kolda;...]

here generalized to $M_{\rm SUSY} \sim M_{\rm EW}$

- some of them are *new FCNC*: $d_i \longrightarrow \tilde{g}, \tilde{\chi}^0$
 - \rightarrow "flavour problem" even in flavour-blind MSSM?
- No, because: $\delta Z_{bi}^L \propto V_{tb}^* V_{ti} \epsilon_{FC} \tan \beta$
 - \rightarrow CKM structure of MFV preserved

 \rightarrow estimate: $\epsilon_{FC} \tan \beta \rightarrow -\frac{y_t^2}{32\pi^2} \tan \beta$ for equal SUSY masses

Results ○○ ○●○ Conclusion

Results: c) New effects in FCNC processes

- now we can have flavour-changing gluino-squark loops entering Wilson coefficients in $\mathcal{H}_{eff}^{\Delta B=1}$

- now we can have flavour-changing gluino-squark loops entering Wilson coefficients in $\mathcal{H}_{eff}^{\Delta B=1}$
- corrections negligible for four-quark operators, but important for chromomagnetic operator

- now we can have flavour-changing gluino-squark loops entering Wilson coefficients in $\mathcal{H}_{eff}^{\Delta B=1}$
- corrections negligible for four-quark operators, but important for chromomagnetic operator

Results ○○ ○●○ Conclusion

Results: c) New effects in FCNC processes

- now we can have flavour-changing gluino-squark loops entering Wilson coefficients in $\mathcal{H}_{eff}^{\Delta B=1}$
- corrections negligible for four-quark operators, but important for chromomagnetic operator

Introduction: Large tan beta	Three Questions	Results	Conclusion
		00	
		00	

• estimate of mixing-induced CP asymmetry in $B^0 \rightarrow \phi K_S$ in leading-order QCD factorization, including tan β -enhanced C_8 : [Buchalla,Hiller,Nir,Raz;...]

Here parameter point with rather large $\mu = 800$ GeV used, compatible with experimental $\mathcal{B}(\bar{B} \to X_s \gamma)$

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion
	Conclusion		

 effects of tan β-enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion	
Conclusion				

IUUUUU

- effects of tan β -enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM
- resummation to all orders is possible without assuming decoupling of SUSY particles

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion	
Conclusion				

- effects of tan β-enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM
- resummation to all orders is possible without assuming decoupling of SUSY particles
- the formula for the mass resummation depends on the renormalization (input) scheme

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion
	Conclusion		

- effects of tan β-enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM
- resummation to all orders is possible without assuming decoupling of SUSY particles
- the formula for the mass resummation depends on the renormalization (input) scheme
- the resummed effects can be incorporated into counterterm Feynman rules

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion
	Conclusion		

- effects of tan β-enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM
- resummation to all orders is possible without assuming decoupling of SUSY particles
- the formula for the mass resummation depends on the renormalization (input) scheme
- the resummed effects can be incorporated into counterterm Feynman rules
- at large tan β, not only the neutral Higgs but also gluino and neutralino do have flavour-changing couplings

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion
	Canalysian		

- effects of tan β-enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM
- resummation to all orders is possible without assuming decoupling of SUSY particles
- the formula for the mass resummation depends on the renormalization (input) scheme
- the resummed effects can be incorporated into counterterm Feynman rules
- at large tan β, not only the neutral Higgs but also gluino and neutralino do have flavour-changing couplings
- these couplings enter $\mathcal{H}_{\rm eff}^{\Delta B=1}$ and lead to a sizeable modification of $C_8(m_b)$

Introduction: Large tan beta	Three Questions	Results 00 00 000	Conclusion
	Canalysian		

- effects of tan β-enhanced self-energies (flavour diagonal and non-diagonal) can be consistently treated in the full MSSM
- resummation to all orders is possible without assuming decoupling of SUSY particles
- the formula for the mass resummation depends on the renormalization (input) scheme
- the resummed effects can be incorporated into counterterm Feynman rules
- at large tan β, not only the neutral Higgs but also gluino and neutralino do have flavour-changing couplings
- these couplings enter $\mathcal{H}_{\rm eff}^{\Delta B=1}$ and lead to a sizeable modification of $C_8(m_b)$

Introduction: Large tan beta	Three Questions	Results	Conclusion
		00	
		000	

Backup slides

Backup: Scheme dependence in m_b -resummation

 observation: sbottom-mixing can (but need not) be expressed by m_b and SUSY-breaking parameters → some freedom to choose input parameters...

Backup: Scheme dependence in m_b -resummation

 observation: sbottom-mixing can (but need not) be expressed by m_b and SUSY-breaking parameters → some freedom to choose input parameters...

Backup: Scheme dependence in m_b -resummation

 observation: sbottom-mixing can (but need not) be expressed by m_b and SUSY-breaking parameters → some freedom to choose input parameters...

$$\overbrace{b_L}^{\tilde{g}} b_R \quad b_L \quad (\overbrace{\widetilde{b}_i, \tilde{c}_i, \tilde{t}_i}^{\tilde{\chi}_m^{\pm}} b_R \quad b_L \quad (\overbrace{\widetilde{b}_i, \tilde{b}_i}^{\tilde{\chi}_m^{0}} b_R$$

- to clarify things, write $\Delta_b = \Delta_b^{\tilde{g}} + \Delta_b^{\tilde{\chi}^{\pm}} + \Delta_b^{\tilde{\chi}^{0}}$
- from Feynman diagrams:
 - gluino contribution depends on θ_{˜b}, φ_{˜b}, m_{˜b1}, m_{˜b2}
 - chargino contribution depends on m_b from Yukawa coupling
 - neutralino contribution depends on m_b and θ_b, φ_b, m_b, m_b, m_b

Introduction: Large tan beta	Three Questions	Results	Conclusion
		00	
		00	
		000	

Backup: parameter points

Scan ranges for C_7 and C_8 : tan $\beta = 40 - 60$, any value for φ_{A_t} ,

	min (GeV)	max (GeV)
$\tilde{m}_{Q_L}, \tilde{m}_{U_R}, \tilde{m}_{d_R}$	250	1000
$ A_t $	100	1000
μ, M ₁ , M ₂	200	1000
M ₃	300	1000
m_{A^0}	200	1000

Parameter point used for $S_{\phi K_S}$:

$\tilde{m}_{Q_L}, \tilde{m}_{u_R}, \tilde{m}_{d_R}$	600 GeV	$\tan\beta$	50
μ	800 GeV	m_{A^0}	350 GeV
<i>M</i> ₁	300 GeV	<i>M</i> ₂	400 GeV
M ₃	500 GeV	φ_{A_t}	$3\pi/2$

Introduction: Large tan beta	Three Questions	Results	Conclusion
		00 00 000	

Backup: C_7 and other operators

 effect of gluino-squark contribution in C₇(m_b) accidentally small (suppressed by a numerical factor from loop function)

Introduction: Large tan beta	Three Questions	Results	Conclusion
		00 00 000	

Backup: C_7 and other operators

• effect of gluino-squark contribution in $C_7(m_b)$ accidentally small (suppressed by a numerical factor from loop function)

• effective four-quark operators in $\mathcal{H}^{\Delta B=1}$ and $\mathcal{H}^{\Delta B=2}$: gluino-squark loops suppressed by GIM-like cancellation between \tilde{b} - and \tilde{s} -loops \rightarrow negligible compared to chargino-squark loops

Backup: Non-local tan β -enhanced effects

• some couplings of H^+ and h^0 are suppressed by $\cos \beta$ at tree-level

Backup: Non-local tan β -enhanced effects

- some couplings of H⁺ and h⁰ are suppressed by cos β at tree-level
- they obtain enhanced vertex corrections $\sim \sin \beta$, e.g.

Resi 00 00 Conclusion

Backup: Non-local tan β -enhanced effects

- some couplings of H⁺ and h⁰ are suppressed by cos β at tree-level
- they obtain enhanced vertex corrections $\sim \sin \beta$, e.g.

• this effect is local only in the decoupling limit, but cannot be cast into a Feynman rule in the full calculation

• Buras, Chankowski, Rosiek, Slawianowska find for the effective CKM matrix:

 $V^{ ext{eff}}_{ji} = (V + \Delta U^{\dagger}_L V + V \Delta D_L)_{ji}$

• Buras, Chankowski, Rosiek, Slawianowska find for the effective CKM matrix:

 $V_{ji}^{\text{eff}} = (V + \Delta U_L^{\dagger} V + V \Delta D_L)_{ji}$

• They start with $V = V^{\text{eff}}$ to calculate ΔD_L , set $\Delta U_L = 0$ and proceed iteratively

• Buras, Chankowski, Rosiek, Slawianowska find for the effective CKM matrix:

 $V_{ji}^{ ext{eff}} = (V + \Delta U_L^{\dagger} V + V \Delta D_L)_{ji}$

- They start with $V = V^{\text{eff}}$ to calculate ΔD_L , set $\Delta U_L = 0$ and proceed iteratively
- They find that the result agrees numerically with the formula from eff. Lagrangian if ϵ -factors are replaced by full self-energies

• Buras, Chankowski, Rosiek, Slawianowska find for the effective CKM matrix:

 $V_{ji}^{\text{eff}} = (V + \Delta U_L^{\dagger} V + V \Delta D_L)_{ji}$

- They start with $V = V^{\text{eff}}$ to calculate ΔD_L , set $\Delta U_L = 0$ and proceed iteratively
- They find that the result agrees numerically with the formula from eff. Lagrangian if ϵ -factors are replaced by full self-energies
- We prove this analytically via the resummation (iteration not needed!)