Hadronic *B* decays in the MSSM with large $\tan \beta$

Xin-Qiang Li

in collaboration with

M. Beneke and L. Vernazza

based on our recent work: arXiv:0901.4841.

Institut für Theoretische Physik E

DESY, Zeuthen, 23 March 2009

1 Introduction

2 Scalar four-quark operators in the MSSM with large $\tan \beta$

- 3 Constraints from $B_s \to \mu^+ \mu^-$ and $B^+ \to \tau^+ \nu_\tau$ decays
- 4 Hadronic matrix elements for $B \rightarrow M_1 M_2$ decays
- 5 Conclusion

Current status of B physics

B-meson weak decays play a very important role in:

- testing the Standard Model;
- probing the origin of CP violation;
- searching for indirect signals of New Physics.

...

- Exp.: the precision of measurements has been and will be improved significantly due to:
 - BaBar at SLAC, and Belle at KEK;
 - Tevatron at Fermilab, and LHCb at CERN;
 - the proposed Super-B factory.

...

- Theo.: various theoretical frameworks have been proposed:
 - based on flavour symmetries of QCD;
 - based on factorization of the evolved QCD dynamics;
 - the QCD factorization (or BBNS) framework;

MSSM with large tan β

 MFV hypothesis: no significant deviations from the SM; the pattern of flavour-changing interactions are governed by the SM Yukawa couplings.

```
G. D'Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, hep-ph/0207036;
A. J. Buras, hep-ph/0310208
```

- the MFV MSSM with large $\tan \beta$ scenario:
 - consistent with approximate unification of top and bottom Yukawa couplings at high energies predicted by some SO(10) models;
 - the FCNC processes mediated by Higgs scalars in the down-quark sector can be significantly enhanced at large tan β;
 - ► still exhibit sizeable deviations from the SM with specific signatures: increase $Br(B_{d,s}^0 \to \mu^+ \mu^-)$ by few orders; decrease $Br(B_u \to \tau \nu)$ by 20-30%;

A. J. Buras, P. H. Chankowski, J. Rosiek and L. Slawianowska, hep-ph/0210145; G. Isidori and P. Paradisi, hep-ph/0605012;

Their effects on non-leptonic *B* decays

• the Higgs exchanges can also generate scalar four-quark operators, which contribute to non-leptonic *B* decays:

C. S. Huang, P. Ko, X. H. Wu and Y. D. Yang, hep-ph/0511129;
H. Hatanaka and K. C. Yang, arXiv:0711.3086;
J. F. Cheng, C. S. Huang and X. H. Wu, hep-ph/0404055;

. . . .

- in connection with transverse polarization in *B* → *VV* decays, and for specific decay modes; large deviations from SM expectations are found;
- Question: given the present strong constraints from leptonic $B_s \rightarrow \mu^+ \mu^-$ and $B_u \rightarrow \tau \nu$ decays, is it possible to gain further insight on this specific scenario from hadronic *B* decays?

Working assumptions:

- to simplify the following discussion, we assume:
 - the large tan β scenario: tan $\beta \simeq 50$, sin $\beta \approx 1$, $1/\cos\beta \approx \tan\beta$;
 - the "decoupling limit": the super-partner particles are somewhat heavier than the EW gauge bosons and the Higgs bosons;
- Thus, the leading effect is due to Higgs exchanges for both neutral and charged interactions:

• the effective couplings originate from loop-induced Higgs couplings and are enhanced by several powers of $\tan \beta$ (see Buras *et al.*), hep-ph/0210145.

The NP effective Hamiltonian

The Higgs-induced new effective Hamiltonian can be written as

$$\mathcal{H}_{\mathrm{eff}}^{\mathrm{Higgs}} = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p^{(D)} \left(C_{11}^D Q_{11}^p + C_{12}^D Q_{12}^p + \sum_{i=13}^{14} \sum_{q=d,s,b} C_i^q Q_i^q \right) + \mathrm{h.c.},$$

• the "current-current" operators from charged Higgs exchange:

$$Q_{11}^{p} = (\bar{p}_{i}b_{i})_{S+P} (\bar{D}_{j}p_{j})_{S-P}, \qquad Q_{12}^{p} = (\bar{p}_{i}b_{j})_{S+P} (\bar{D}_{j}p_{i})_{S-P}, \qquad (p = u, c)$$

• the "penguin" operators from neutral Higgs-fermion vertices:

$$Q_{13}^q = (\bar{D}_i b_i)_{S+P} (\bar{q}_j q_j)_{S-P}, \qquad Q_{14}^q = (\bar{D}_i b_j)_{S+P} (\bar{q}_j q_i)_{S-P}, \qquad (q = d, s, b)_{S+P} (\bar{q}_j q_j)_{S-P},$$

• contrary to the SM case, all of these new operators have the $(S + P) \times (S - P)$ Dirac structure, rather than $(V - A) \times (V \pm A)$ form.

The short-distance WCs at the initial scale

- we use the effective Higgs couplings in the decoupling and large $\tan \beta$ limit given in hep-ph/0110121, hep-ph/0210145.
- combining a flavour-changing and a flavour-conserving coupling, we get:

$$C_{13}^{d_J}(\mu_H) = \frac{1}{2} \frac{\bar{m}_{d_J} \bar{m}_b \epsilon_Y y_l^2 \tan^3 \beta}{(1 + \tilde{\epsilon}_3 \tan \beta)(1 + \epsilon_0 \tan \beta)(1 + \tilde{\epsilon}_J \tan \beta)} \mathcal{F}_{2,J}^{-}, \quad C_{14}^{d_J}(\mu_H) = 0.$$

$$C_{11}^{D}(\mu_{H}) = -\frac{\bar{m}_{b}\bar{m}_{D}}{M_{H^{+}}^{2}} \frac{\tan^{2}\beta}{(1+\epsilon_{0}\tan\beta)^{2}}, \qquad C_{12}^{D}(\mu_{H}) = 0$$

- the ϵ -coefficients denote the loop-induced Higgs-fermion couplings;
- in the MFV MSSM with large tan β , only these operators $Q_{11,12}^{p}$, $Q_{13,14}^{s,b}$ are relevant, while all the others are negligible due to various suppression factors.

Renormalization group evolution

- we perform the evolution from $\mu_H = 200 \text{ GeV}$ down to $m_b = 4.2 \text{ GeV}$;
- including the penguin diagrams, the scalar operators mix into the SM penguin operators and their "mirror" copies: six SM operators $Q_{1,2}^p$, Q_{3-6} , their mirror copies $Q_{1,2}'^p$, Q'_{3-6} , and six scalar operators $Q_{11,12}^p$, $Q_{13,14}^{D,b}$,
 - ► for the scalar operators:

$$\begin{split} C^{D}_{11}(m_b)/C^{D}_{11}(\mu_H) &= C^{q}_{13}(m_b)/C^{q}_{13}(\mu_H) \approx 2.35 \ (2.20) \,, \\ C^{D}_{12}(m_b)/C^{D}_{11}(\mu_H) &= C^{q}_{14}(m_b)/C^{q}_{13}(\mu_H) \approx 0.088 \ (0) \,. \end{split}$$

▶ for the mirror QCD penguin operators:

$$C_i^{\prime D}(m_b) \approx -0.71 \ C_i^{\rm SM}(m_b) \times [C_{11}^D(\mu_H) + C_{13}^D(\mu_H)], \quad i = 3 \dots 6,$$

▶ the SM QCD penguin operators are modified by $(C_i = C_i^{\text{SM}} + \delta C_i)$:

$$\delta C_i(m_b) \approx -0.71 C_i^{\rm SM}(m_b) \times C_{13}^b(\mu_H), \quad i = 3...6.$$

Naive estimate of the scalar operator coefficients

assuming ϵ_0 , ϵ_Y , $\tilde{\epsilon}_J$ to be of order 0.01, and $M_{A^0} = 200 \text{ GeV}$ and $\tan \beta = 50$, then the scalar penguin operator coefficients $C_{13}^s \simeq 0.01$, $C_{13}^b \simeq 0.5$;

A. J. Buras, P. H. Chankowski, J. Rosiek and L. Slawianowska, hep-ph/0210145

- while in the SM, we have $C_3 \simeq 0.014$, $C_4 \simeq -0.036$, $C_5 \simeq 0.009$, $C_6 \simeq -0.042$;
- Thus, they are comparable, and hence large effects from the scalar operators on hadronic *B* decays are possible;
- but how about the situation after taking into account the constraints from the other decay processes, such as $B_s \rightarrow \mu^+ \mu^-$ and $B^+ \rightarrow \tau^+ \nu_{\tau}$?

Constraints from $B_s \to \mu^+ \mu^-$ and $B^+ \to \tau^+ \nu_{\tau}$ decays

Constraints from $B_s \rightarrow \mu^+ \mu^-$

• this decay proceeds via an interaction similar to the $b \rightarrow s\bar{q}q$ transitions, with the $\bar{q}q$ pair replaced by a muon pair:

• using the present upper limit, $\operatorname{Br}(B_s \to \mu^+ \mu^-) \leq 5.8 \cdot 10^{-8} @95\%$ C.L., $f_{B_s} = 240 \text{ MeV}, \bar{m}_s(2 \text{ GeV}) = 90 \text{ MeV}$ and $\bar{m}_b(\bar{m}_b) = 4.2 \text{ GeV}$, we obtain:

 $|C_{13}^s(m_b)| \le 0.001 \ (0.01), \qquad |C_{13}^b(m_b)| \le 0.05 \ (0.5),$

• C_{13}^q are constrained to be a factor of 10 smaller than the naive estimates.

Constraints from $B_s \to \mu^+ \mu^-$ and $B^+ \to \tau^+ \nu_{\tau}$ decays

Constraints from $B^+ \rightarrow \tau^+ \nu_{\tau}$

• the $C_{11}^D(\mu_H)$ can be related to $B^+ \to \tau^+ \nu_{\tau}$ in a similar way:

$$R_{\tau\nu_{\tau}} \equiv \frac{\mathrm{Br}(B^+ \to \tau^+\nu_{\tau})_{\mathrm{MSSM}}}{\mathrm{Br}(B^+ \to \tau^+\nu_{\tau})_{\mathrm{SM}}} = \left(1 + C_{11}^D(\mu_H) \frac{m_B^2(1 + \epsilon_0 \tan\beta)}{\bar{m}_D(\mu_H)\bar{m}_b(\mu_H)}\right)^2.$$

• using Br $(B^+ \to \tau^+ \nu_{\tau}) = (1.51 \pm 0.33) \cdot 10^{-4}$, $|V_{ub}| f_{B_d} = 7.4 \cdot 10^{-4}$ GeV, we get:

$$-0.08 < C_{11}^s(m_b) < -0.06$$
, or $-0.005 < C_{11}^s(m_b) < 0.018$.

- this constraint on C^s₁₁ is not as stringent as the one on C^s₁₃; However, we should keep in mind that the charged Higgs contribution must compete with the large SM tree operators.
- So, the largest values for these new coefficients are constrained to be:

$$C_{11}^{s}(m_b) = -0.08, \qquad C_{13}^{s}(m_b) = 0.001, \qquad C_{13}^{b}(m_b) = 0.05.$$

Hadronic matrix elements for $B \rightarrow M_1 M_2$ decays

• to calculate the decay amplitude, we employ the QCD factorization framework:

 M. Beneke, G. Buchalla, M. Neubert, C. T Sachrajda, 1999, 2000, 2001, M. Beneke, M. Neubert, 2002, 2003, M. Beneke, J. Rohrer, D. S. Yang, 2006, 2007.

• the hadronic matrix element of the effective Hamiltonian is written as:

$$\langle M'_1 M'_2 | \mathcal{H}_{\mathrm{eff}} | \bar{B} \rangle = \sum_{p=u,c} \lambda_p^{(D)} \langle M'_1 M'_2 | \mathcal{T}_A^p + \mathcal{T}_B^p | \bar{B} \rangle,$$

- T_A^p : LO, vertex, penguin and spectator-scattering terms;
- \mathcal{T}_B^p : the weak annihilation amplitudes.

• now including the scalar and the mirror QCD penguin operators, we have:

$$\begin{aligned} \mathcal{T}_{A}^{p} &= \delta_{pu} \left[\alpha_{1}(M_{1}M_{2}) + \alpha_{11}^{D}(M_{1}M_{2}) \right] A([\bar{q}_{s}u][\bar{u}D]) \\ &+ \delta_{pu} \left[\alpha_{2}(M_{1}M_{2}) + \alpha_{12}^{D}(M_{1}M_{2}) \right] A([\bar{q}_{s}D][\bar{u}u]) \\ &+ \left[\alpha_{3}^{p}(M_{1}M_{2}) + \alpha_{3}^{\prime pD}(M_{1}M_{2}) \right] \sum_{\substack{q=u,d,s \\ q=u,d,s}} A([\bar{q}_{s}D][\bar{q}q]) \\ &+ \sum_{\substack{q=d,s \\ q=d,s}} \alpha_{3q}^{p}(M_{1}M_{2}) A([\bar{q}_{s}D][\bar{q}q]) + \sum_{\substack{q=d,s \\ q=d,s}} \alpha_{4q}^{p}(M_{1}M_{2}) A([\bar{q}_{s}q][\bar{q}D]) \\ &+ \ldots \end{aligned}$$

• $\alpha_{11,12}^D$: charged Higgs effects; $\alpha_{3,4}^{\prime pD}$: mirror QCD penguins; $\alpha_{3q,4q}^p$: neutral Higgs effects; modifications of the standard QCD penguin amplitudes.

- since $V \pm A$ and $S \pm P$ operators contribute differently to pseudoscalar (P) and vector (V) final states, we have to distinguish between different final states.
- the new operator contributions to $\overline{B} \rightarrow VV$ decays obey a different hierarchy:

$$\bar{\mathcal{A}}_0: \bar{\mathcal{A}}_-: \bar{\mathcal{A}}_+ = 1: \frac{\Lambda_{\text{QCD}}^2}{m_b^2}: \frac{\Lambda_{\text{QCD}}}{m_b} (1: \frac{\Lambda_{\text{QCD}}}{m_b}: \frac{\Lambda_{\text{QCD}}^2}{m_b^2})$$

• for example, we have:

$$\alpha_{4}^{\prime p}(M_{1}M_{2}) = \begin{cases} -a_{4}^{\prime p}(M_{1}M_{2}) - r_{\chi}^{M_{2}} a_{6}^{\prime p}(M_{1}M_{2}), & \text{if } M_{1}M_{2} = PP, \\ a_{4}^{\prime p}(M_{1}M_{2}) + r_{\chi}^{M_{2}} a_{6}^{\prime p}(M_{1}M_{2}), & \text{if } M_{1}M_{2} = PV, \\ a_{4}^{\prime p}(M_{1}M_{2}) - r_{\chi}^{M_{2}} a_{6}^{\prime p}(M_{1}M_{2}), & \text{if } M_{1}M_{2} = VP, \\ -a_{4}^{\prime p}(M_{1}M_{2}) + r_{\chi}^{M_{2}} a_{6}^{\prime p}(M_{1}M_{2}), & \text{if } M_{1}M_{2} = V^{0}V^{0}, \\ f_{\pm}^{M_{1}} \left(-a_{4}^{\prime p}(M_{1}M_{2}) + r_{\chi}^{M_{2}} a_{6}^{\prime p}(M_{1}M_{2}) \right), & \text{if } M_{1}M_{2} = V^{\pm}V^{\pm}, \end{cases}$$

• $f_{\pm}^{M_1} = F_{\mp}^{B \to M_1}(0) / F_{\pm}^{B \to M_1}(0) : f_{\pm}^{M_1} \sim m_B / \Lambda_{\text{QCD}} \text{ and } f_{\pm}^{M_1} \sim \Lambda_{\text{QCD}} / m_B.$

• within the QCDF framework, the $a_{iq}^{(\prime)p}$ coefficients have such general form:

$$\begin{aligned} a_{iq}^{(\prime)\,p}(M_1M_2) &= \left(C_i^{(\prime)\,q} + \frac{C_{i\pm 1}^{(\prime)\,q}}{N_c}\right) N_i^{(\prime)}(M_2) \\ &+ \frac{C_{i\pm 1}^{(\prime)\,q}}{N_c} \, \frac{C_F \alpha_s}{4\pi} \left[V_i^{(\prime)}(M_2) + \frac{4\pi^2}{N_c} \, H_i^{(\prime)}(M_1M_2)\right] + P_i^{(\prime)\,p}(M_2), \end{aligned}$$

- $N_i^{(\prime)}(M_2)$: the tree-level result; $V_i^{(\prime)}(M_2)$: the 1-loop vertex correction; $H_i^{(\prime)}(M_1M_2)$: the spectator scattering; $P_i^{(\prime)\,p}(M_2)$: the penguin diagrams.
- for the scalar operators, setting $C_{12}^D = C_{14}^q = 0$, we have explicitly:

$$a_{13q}^{p}(M_{1}M_{2}) = C_{13}^{q} N_{13q},$$

$$a_{14q}^{p}(M_{1}M_{2}) = \frac{C_{13}^{q}}{N_{c}} + \frac{C_{13}^{q}}{N_{c}} \frac{C_{F}\alpha_{s}}{4\pi} \left[V_{5}(M_{2}) + \frac{4\pi^{2}}{N_{c}} H_{5}(M_{1}M_{2}) \right],$$

• the scalar operators also contribute to the penguin terms $P_{4,6}^{(\prime)\,p}(M_2)$ with:

$$\begin{split} \delta P_4^p(M_1M_2) &= \frac{C_F \alpha_s}{4\pi N_c} \left(-\frac{1}{2}\right) C_{13}^b \left[\frac{4}{3} \log \frac{m_b}{\mu} - G_{M_2}^f(1)\right],\\ \delta P_4'^p(M_1M_2) &= \frac{C_F \alpha_s}{4\pi N_c} \left(-\frac{1}{2}\right) \left\{ C_{13}^D \left[\frac{4}{3} \log \frac{m_b}{\mu} - G_{M_2}^f(0)\right] + C_{11}^D \left[\frac{4}{3} \log \frac{m_b}{\mu} - G_{M_2}^f(s_p)\right] \right\} \end{split}$$

- the explicit scale dependence in $\delta P_{4,6}^{(\prime)p}(M_2)$ cancels the extra scale dependence of the (mirror) QCD penguin coefficients at LL accuracy;
- both Q_{11}^p and Q_{13}^D contribute the mirror penguin operators, while only Q_{13}^b mixes into the SM penguins.

$B \rightarrow PP, PV$ decays:

to evaluate the Higgs contributions, the largest values of the coefficient functions allowed by the constraints from leptonic decays are assumed:

 $C_{11}^{s}(m_b) = -0.08, \qquad C_{13}^{s}(m_b) = 0.001, \qquad C_{13}^{b}(m_b) = 0.05.$

α_1	$0.966 + 0.021i [\pi \bar{K}]$	$0.981 + 0.021i \left[ho \bar{K} ight]$	$0.973 + 0.021i [\pi \bar{K}^*]$
α_2	$0.351 - 0.084i \ [ar{K}\pi]$	$0.260 - 0.084i [ar{K}^* \pi]$	$0.323 - 0.084i [\bar{K} ho]$
α_{11}^s	$-0.059 \ [\pi \bar{K}]$	$-0.059 \ [ho \bar{K}]$	$0 \left[\pi \bar{K}^* ight]$
α_{12}^s	$0.003 + 0.003i [ar{K}\pi]$	$-0.006 - 0.003i \left[\bar{K}^* \pi \right]$	$0.004 + 0.003i \ [ar{K} ho]$

- the charged Higgs exchange $(\alpha_{11,12}^D)$ contributes directly to tree-dominated decays (such as $B \to \pi\pi, \pi\rho, \rho\rho$), but must compete with the sizeable SM tree amplitudes $\alpha_{1,2}$.
- since $\alpha_{11,12}^D \propto \bar{m}_D$, only $b \to s\bar{u}u$ transitions are of interest, but no such kind of decays, since in this case the tree amplitudes are doubly CKM-suppressed, $\lambda_u^{(s)} \ll \lambda_c^{(s)}$.

$B \rightarrow PP, PV$ decays:

	$\bar{K}\eta_s$	$ar{K}^*\eta_s$	$ar{K}\phi$
α_3^u	-0.0013 + 0.0046i	0.0027 + 0.0046i	0.0006 - 0.0005i
α_4^u	-0.095 - 0.040i	0.038 + 0.008i	-0.031 - 0.017i
$\alpha_3^{\prime u}$	$7.8 \cdot 10^{-5} - 0.0001i$	$2.8 \cdot 10^{-5} + 0.0001i$	$(1.4 - 1.3i) \cdot 10^{-5}$
$\alpha_4^{\prime u}$	0.0035 + 0.0015i	0.0011 + 0.0003i	-0.0013 - 0.0006i
$\alpha^{u}_{3,\mathrm{EW}}$	-0.0089 - 0.0002i	-0.0091 - 0.0002i	-0.0082 - 0.0001i
$\alpha^{u}_{4,\mathrm{EW}}$	-0.0016 + 0.0006i	-0.0025 + 0.0008i	-0.0024 + 0.0007i
α_{3s}^u	0.00078	0.00078	0
α_{4s}^u	$(-6.3 - 3.7i) \cdot 10^{-5}$	$(9.7 + 3.7i) \cdot 10^{-5}$	$(-6.3 - 3.7i) \cdot 10^{-5}$

- the effects from the mirror QCD penguin operators $(\alpha_{3,4}^{\prime p})$ must compete with the SM penguin amplitudes, which requires the scalar WCs to be of order 1.
- the direct FCNC Higgs coupling contributions $(\alpha_{3q,4q}^p)$ are an isospin-violating effect, and must compete only with the small SM EW penguins.
- since $\alpha_{3q,4q}^p \propto \bar{m}_q$, only the q = s case is of interest. This singles out the decay modes: $\bar{B} \to \bar{K}^{(*)}(\eta^{(\prime)}, \phi), \bar{B}_s \to (\eta^{(\prime)}, \phi)(\eta^{(\prime)}, \phi), \bar{B} \to \bar{K}^{(*)}K^{(*)}, \bar{B}_s \to K^{(*)}\phi$.

$B \rightarrow VV$ decays: $\overline{F_+^{B \rightarrow V_1}} = \overline{0.06}$

	$(ar{K}^*\phi)^{00}$	$(\bar{K}^*\phi)^{}$	$(\bar{K}^*\phi)^{++}$
$\alpha_1 \left[\rho \bar{K}^* \right]$	0.987 + 0.021i	1.101 + 0.041i	1.018
$\alpha_2 \left[\bar{K}^* \rho \right]$	0.240 - 0.084i	-0.173 - 0.169i	0.170
$\alpha_{11}^s \left[\rho \bar{K}^* \right]$	0	0	0
$\alpha_{12}^s \left[\bar{K}^* \rho \right]$	-0.007 - 0.003i	-0.002	-0.247 - 0.068i
α_3^u	0.0001 - 0.0005i	-0.0023 - 0.0010i	-0.0035
α_4^u	-0.026 - 0.015i	-0.044 - 0.017i	-0.031
δP_4^u	$1.4 \cdot 10^{-5}$	$0.7 \cdot 10^{-5}$	$2.2 \cdot 10^{-5}$
δP_6^u	$-1.5 \cdot 10^{-5}$	0	0
α'^{u}_{3}	$(-0.2 + 1.3i) \cdot 10^{-5}$	$(5.1 + 2.3i) \cdot 10^{-6}$	0.0010
$\alpha_4^{\prime u}$	0.0011 + 0.0006i	$0.0001 + 5.5 \cdot 10^{-5}i$	0.0173 + 0.0074i
$\delta P_4^{\prime u}$	-0.0005 - 0.0007i	-0.0004 - 0.0007i	-0.0007 - 0.0007i
$\delta P_6^{\prime u}$	-0.0003	0	0
$\alpha^{u}_{3,\mathrm{EW}}$	-0.0084 - 0.0001i	0.0044 - 0.0003i	-0.009
$\alpha^{u}_{4,\mathrm{EW}}$	-0.0017 + 0.0007i	0.0015 + 0.0014i	-0.0015
α^u_{3s}	0	0	0
α^{u}_{4s}	$(9.7+3.7i) \cdot 10^{-5}$	$2.0 \cdot 10^{-5}$	0.0031 + 0.0008i

- Motivated by the interest in the MFV MSSM with large $\tan \beta$, we have reanalyzed hadronic *B* decays in this model.
- The hadronic and leptonic flavour-changing interactions are closely related, and we translate the present limit on the $Br(B_s \rightarrow \mu^+ \mu^-)$, and the observation of $B^+ \rightarrow \tau^+ \nu_{\tau}$ into a constraint on the relevant scalar operator coefficients.
- We then calculated the hadronic matrix elements of scalar operators and mirror QCD penguin operators in the QCDF framework.
- The current limits on leptonic *B* decays exclude any visible effects in two-body hadronic *B* decays.
- Although the positive-helicity amplitude of $\overline{B} \rightarrow VV$ may receive order one modifications relative to the SM, this amplitude is too small to be detected at present or planned *B* factories.

Back up

Constraints from $B_s \rightarrow \mu^+ \mu^-$

• this decay proceeds via an interaction similar to the $b \rightarrow s\bar{q}q$ transitions, except with the $\bar{q}q$ pair replaced by a muon pair:

• for large tan β , a single scalar operator $(\overline{D}b)_{S+P}(\overline{\mu}\mu)_{S-P}$ dominates the decay amplitude, while the SM contribution is negligible, with the coefficient:

$$egin{aligned} C_{\mu\mu}(\mu_{H}) &= -rac{1}{2}rac{ar{m}_{b}m_{\mu}\epsilon_{Y}y_{l}^{2} an^{3}eta}{(1+ ilde{\epsilon}_{3} aneta)(1+\epsilon_{0} aneta)}\mathcal{F}_{2l}^{-}, \ \mathcal{F}_{2l}^{-} &= rac{s_{lpha-eta}(c_{lpha})}{M_{H_{0}}^{2}} + rac{c_{lpha-eta}(-s_{lpha})}{M_{h_{0}}^{2}} - rac{1}{M_{A_{0}}^{2}} pprox\mathcal{F}_{2,J}^{-}. \end{aligned}$$

Conclusion

Constraints from $B_s \rightarrow \mu^+ \mu^-$ (continued)

• using the relation between $C_{\mu\mu}(\mu_H)$ and C_{13}^q , we get:

$$(1+\tilde{\epsilon}_J \tan\beta) |C_{13}^{d_J}(\mu_H)| = \frac{2\sqrt{2\pi}(\bar{m}_b + \bar{m}_s)(\mu_H)}{G_F f_{B_s} m_{B_s}^{5/2} \tau_{B_s}^{1/2} |\lambda_t^{(s)}|} \frac{\bar{m}_{d_J}(\mu_H)}{m_{\mu}} \left[\text{Br}(B_s \to \mu^+ \mu^-) \right]^{1/2} ds^{-1/2} ds^{$$

- using the present exp. limit, $\operatorname{Br}(B_s \to \mu^+ \mu^-) \leq 5.8 \cdot 10^{-8} @95\%$ C.L., $f_{B_s} = 240 \operatorname{MeV}, \, \bar{m}_s(2 \operatorname{GeV}) = 90 \operatorname{MeV} \text{ and } \bar{m}_b(\bar{m}_b) = 4.2 \operatorname{GeV}, \text{ we obtain:}$ $(1 + \epsilon_0 \tan \beta) |C_{13}^s(\mu_H)| \leq 1.4 \cdot 10^{-4}, \quad (1 + \tilde{\epsilon}_3 \tan \beta) |C_{13}^b(\mu_H)| \leq 7.9 \cdot 10^{-3}.$
- requiring $(1 + \tilde{\epsilon}_J \tan \beta) \ge 1/3$ and including the evolution factor lead to:

 $|C_{13}^{s}(m_b)| \leq 0.001 \ (0.01), \qquad |C_{13}^{b}(m_b)| \leq 0.05 \ (0.5),$

• C_{13}^q are constrained to be a factor of 10 smaller than the naive estimates.

Conclusion

Constraints from $B^+ \rightarrow \tau^+ \nu_{\tau}$

• the $C_{11}^D(\mu_H)$ can be related to $B^+ \to \tau^+ \nu_{\tau}$ in a similar way:

$$R_{\tau\nu_{\tau}} \equiv \frac{\text{Br}(B^+ \to \tau^+ \nu_{\tau})_{\text{MSSM}}}{\text{Br}(B^+ \to \tau^+ \nu_{\tau})_{\text{SM}}} = \left(1 + C_{11}^D(\mu_H) \frac{m_B^2(1 + \epsilon_0 \tan\beta)}{\bar{m}_D(\mu_H)\bar{m}_b(\mu_H)}\right)^2$$

• using Br($B^+ \rightarrow \tau^+ \nu_{\tau}$) = (1.51 ± 0.33) \cdot 10⁻⁴, $|V_{ub}| f_{B_d}$ = 7.4 \cdot 10⁻⁴ GeV, and assigning a conservative 50% uncertainty to the SM prediction, we get:

$$\begin{aligned} -0.012 < (1 + \epsilon_0 \tan \beta) C_{11}^s(\mu_H) < -0.009, \\ -0.001 < (1 + \epsilon_0 \tan \beta) C_{11}^s(\mu_H) < 0.003. \end{aligned}$$

• requiring $1 + \epsilon_0 \tan \beta > 1/3$ and including the RG evolution results in:

 $-0.08 < C_{11}^{s}(m_b) < -0.06$, or $-0.005 < C_{11}^{s}(m_b) < 0.018$.

this constraint on C^s₁₁ is not as stringent as the one on C^s₁₃; However, the charged Higgs contribution must compete with the SM tree operators.