Heavy-fermion Corrections to the Matching Coefficient of the Vector Current

Peter Marquard

Institut für Theoretische Teilchenphysik Universität Karlsruhe

in collaboration with

J. Piclum, D. Seidel, M. Steinhauser

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

- ロ ト - 4 目 ト - 4 目 ト - 4 日 ト - 9 0 0

SFB Treffen Zeuthen 2009

Introduction

- matching coefficient important building block for full NNNLO prediction of $\sigma(e^+e^- \rightarrow t\bar{t})$ at threshold
- contribution from diagrams with light quark loops done [PM,Piclum,Seidel,Steinhauser]
- next step: heavy quark loops (much more complicated)

Introduction

- matching coefficient important building block for full NNNLO prediction of $\sigma(e^+e^- \rightarrow t\bar{t})$ at threshold
- contribution from diagrams with light quark loops done [PM,Piclum,Seidel,Steinhauser]
- next step: heavy quark loops (much more complicated)

Notations and Conventions

• matching coefficient c_v can be obtained by calulating $\gamma \rightarrow t\bar{t}$ at threshold

Generation of Three-Point Topology Definitions

- diagrams generated with qgraf[Nogueira]
- three-point topologies automatically generated from two-point topologies

Generation of Three-Point Topology Definitions

- diagrams generated with qgraf[Nogueira]
- three-point topologies automatically generated from two-point topologies

attach photon to fermion line

 all Feynman diagrams mapped onto 20 topologies using q2e, exp

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Reduction and Identification

 use of projectors and taking traces generates 80550 scalar integrals which have to be reduced to master integrals

Reduction and Identification

- use of projectors and taking traces generates 80550 scalar integrals which have to be reduced to master integrals
- Integrals are reduced to master integrals using Integration-By-Parts together with Laporta's algorithm implemented in Crusher [PM, Seidel]
- input for Crusher generated automatically

Reduction and Identification

- use of projectors and taking traces generates 80550 scalar integrals which have to be reduced to master integrals
- Integrals are reduced to master integrals using Integration-By-Parts together with Laporta's algorithm implemented in Crusher [PM, Seidel]
- input for Crusher generated automatically
- sets of master integrals of different topologies not disjoint
- $\bullet\,$ identification done automatically \rightarrow 24 master integrals

Calculation of master integrals

- 24 master integrals, 12 known analytically
- $\bullet\,$ single scale integrals \rightarrow limited number of tools
- evaluated using sector decomposition (FIESTA_[Smirnov, Tentyukov]) \rightarrow "low" numerical precision e.g. (0.059386 ± 2 · 10⁻⁶)/ ϵ + (0.990406 ± 0.000013) + (1.025197 ± 0.000092) ϵ + (39.4366 ± 0.000736) ϵ ² + (33.115019 ± 0.006431) ϵ ³

Calculation of master integrals

- 24 master integrals, 12 known analytically
- $\bullet\,$ single scale integrals \rightarrow limited number of tools
- evaluated using sector decomposition (FIESTA_[Smirnov, Tentyukov]) \rightarrow "low" numerical precision e.g. (0.059386 ± 2 · 10⁻⁶)/ ϵ + (0.990406 ± 0.000013) + (1.025197 ± 0.000092) ϵ + (39.4366 ± 0.000736) ϵ ² + (33.115019 ± 0.006431) ϵ ³
- other methods:
 - Mellin-Barnes
 - differential equations

Outline of the Calculation

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●

Results

$$c_{v} = 1 + \frac{\alpha_{s}^{(n_{l})}(\mu)}{\pi} c_{v}^{(1)} + \left(\frac{\alpha_{s}^{(n_{l})}(\mu)}{\pi}\right)^{2} c_{v}^{(2)} + \left(\frac{\alpha_{s}^{(n_{l})}(\mu)}{\pi}\right)^{3} c_{v}^{(3)} + \mathcal{O}(\alpha_{s}^{4})$$

$$c_{v}^{(3)} = C_{F}Tn_{I}(C_{F}c_{FFL} + C_{A}c_{FAL} + Tn_{h}c_{FHL} + Tn_{I}c_{FLL})$$

$$+ C_{F}Tn_{h}(C_{F}c_{FFH} + C_{A}c_{FAH} + Tn_{h}c_{FHH})$$

$$+ non-fermionic and singlet terms$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の < @

Results

$C_V _{n_h}$			
		numerical	semi-analytical
		result	result
	$C_F^2 n_h _{\log}$	-0.495(2)	-0.494(1)
	$C_F^2 n_h$	-0.841(3)	-0.840(2)
	$C_F C_A n_h$	-0.10(2)	-0.09(2)
	$C_F n_h^2$	0.05126(1)	0.05124
	$C_F n_h n_l$	-0.27029(4)	-0.27025
	$c_{v}^{(3)} _{n_{h}}$	$-0.93(4)n_{h}$	$-0.92(4)n_h$
		$-0.09009(1)n_hn_l$	$-0.09008 n_h n_l$

no significant improvement by using known analytical results

Comparison with old calculation of <i>n_l</i> part							
	new calc	old <i>n_l</i> part calc					
2-loop	-42.5138(2)	-42.5140					
$C_F^2 n_l$	46.691(1)	46.7(1)					
$C_F C_A n_I$	39.623(1)	39.6(1)					
$C_F n_l n_h$	-0.27029(4)	-0.2703					
$C_F n_l^2$	-2.46833(3)	-2.4683					
$c_{v}^{(3)} _{n_{l}}$	$n_l (120.660(3) - 0.8228 n_l)$	$n_l(1210.8228n_l)$					

- excellent agreement
- even smaller error (sector decomposition ↔ Mellin-Barnes)

Checks

Change of integral basis

	basis 2	basis 3	
$C_F^2 n_h _{\log}$	-0.50(1)	-0.496(8)	
$C_F^2 n_h$	-0.85(6)	-0.86(2)	
$C_F C_A n_h$	-0.15(9)	-0.13(4)	
$C_F n_h^2$	0.0513(1)	0.0513(1)	
$C_F n_h n_l$	-0.27028(3)	-0.2703(2)	
$\tilde{c}_{v}^{(3)} _{n_{h}}$	-1.04(23) <i>n_h</i>	-1.00(11) <i>n_h</i>	
	$-0.09009(1)n_hn_l$	$-0.09008(5)n_hn_l$	

- replace "standard" master integrals by (more complicated) integrals with raised powers of propagators
- requires deeper expansion in ϵ (up to ϵ^5)

Checks: Summary

- setup applied to light fermionic contribution reproduces known result
- gauge parameter independent (linear term)
- renormalizable
- numerical results stable against reparametrization of integrals
- different integral bases give compatible results
- FIESTA-parameter (ifCut) independent

Conclusion

- heavy-fermionic contributions to the matching coefficient of the vector current calculated
- (fully) automated calculation
- important step toward the full NNLO calculation
- conservative error estimate

final result

$$c_{v}^{(3)} \approx -0.823 n_{l}^{2} + 120.66(1) n_{l} - 0.93(8)$$

+non-fermionic and singlet terms

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outlook

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outlook

singlet part: handle on master integrals still missing