Real Radiation and Sudakov Logarithms electroweak corrections at high energies

Jörg Rittinger, TTP Karlsruhe

in collaboration with

Dr. Guido Bell, TTP Karlsruhe Prof. J. H. Kühn, TTP Karlsruhe

SFB Meeting 23 - 25 March 2009

motivation

At TeV-energies electroweak corrections become large, because they are enhanced by Sudakov Logarithms

$$rac{lpha}{4\pi\sin^2 heta_W}\log^2\left(rac{M_{W/Z}^2}{s}
ight) \sim 7\%$$
 at 1 TeV

Mainly the virtual corrections are calculated (no need for real corrections)

motivation

At TeV-energies electroweak corrections become large, because they are enhanced by Sudakov Logarithms

$$rac{lpha}{4\pi\sin^2 heta_W}\log^2\left(rac{M_{W/Z}^2}{s}
ight) \sim 7\%$$
 at 1 TeV

Mainly the virtual corrections are calculated (no need for real corrections)

 $e^+e^- \rightarrow f\overline{f}$: Jantzen, Kühn, Penin, Smirnov '05

There are some open questions about the relevance of real corrections

Ciafaloni, Comelli '99 - '06 Baur '07

Sudakov Logarithms

At high energies electroweak corrections are dominated by mass singularities.

soft singularities

M

collinear singularities

divergent if m = 0 and M = 0

Sudakov Logarithms

At high energies electroweak corrections are dominated by mass singularities.

soft singularities

M

collinear singularities

divergent if M = 0

divergent if m = 0 and M = 0

If $M \neq 0$, but $M^2 \ll s$, |t|, |u|: Divergences \rightarrow Sudakov Logarithms

Sudakov Logarithms

Similar for real emission: soft singularities

collinear singularities

Cancellation

$$\sigma^{(V)} = \frac{\alpha}{4\pi} \left[c_{sc}^{(V)} \log^2 + c_c^{(V)} \log + c_s^{(V)} \log + c_0^{(V)} \right] \sigma_0(s)$$

$$\sigma^{(R)} = \frac{\alpha}{4\pi} \left[c_{sc}^{(R)} \log^2 + c_c^{(R)} \log + c_s^{(R)} \log + c_0^{(R)} \right] \sigma_0(s) + \frac{\alpha}{4\pi} \int dz [\dots] + \sigma_0(zs)$$

In QED or QCD (sum over *colors*) $c^{(V)} = -c^{(R)}$ (KLN-Theorem)

Cancellation

$$\sigma^{(V)} = \frac{\alpha}{4\pi} \left[c_{sc}^{(V)} \log^2 + c_c^{(V)} \log + c_s^{(V)} \log + c_0^{(V)} \right] \sigma_0(s)$$

$$\sigma^{(R)} = \frac{\alpha}{4\pi} \left[c_{sc}^{(R)} \log^2 + c_c^{(R)} \log + c_s^{(R)} \log + c_0^{(R)} \right] \sigma_0(s) + \frac{\alpha}{4\pi} \int dz [\dots]_+ \sigma_0(zs)$$

In QED or QCD (sum over *colors*) $c^{(V)} = -c^{(R)}$ (KLN-Theorem)

In the EW theory we must **NOT** sum over *isospin* \rightarrow Logarithms no longer cancel (Bloch-Nordsieck-Violation)

Questions

When can't we see real radiation

- collinear radiation into the beam pipe
- collinear radiation into a jet
- *soft* gauge boson decays into particles similar to the background

Questions

When can't we see real radiation

- collinear radiation into the beam pipe
- collinear radiation into a jet
- *soft* gauge boson decays into particles similar to the background

Two Questions

how does the

- the group structure (BN-Violations)
- the restriction on the phase space

influence the sum of virtual and real corrections

Simplified model

• no mixing between the gauge groups (SU(2)-theory)

$$\rightarrow M_W = M_Z$$

massless fermions, vectorlike coupling

We study an explicit process:
$$f\overline{f} \rightarrow f'\overline{f'}$$

Full inclusive cross section at $\mathcal{O}(\alpha)$				
• neutral initial state:	σ_{uu} :	и и	\rightarrow	$\sum f'\overline{f}'(V)$
• charged initial state:	σ_{du} :	du	\rightarrow	$\sum f'\overline{f}'(V)$

Structure of Sudakov Logarithms

Correction to neutral initial state

$$\sigma_{uu}^{(V)} = \frac{\alpha}{4\pi} \left[-3 \left[\log^2 + 3 \log \right] - \frac{26}{3} \log \right] \sigma_{uu}^0(s)$$

$$\sigma_{uu}^{(R)} = \frac{\alpha}{4\pi} \left[+4 \left[\log^2 + 3 \log \right] + \frac{26}{3} \log \right] \sigma_{uu}^0(s) + \int dz \left[\dots \right]_+ \sigma_{uu}^0(zs)$$

Structure of Sudakov Logarithms

Correction to neutral initial state

$$\sigma_{uu}^{(V)} = \frac{\alpha}{4\pi} \left[-3 \left[\log^2 + 3\log \right] - \frac{26}{3}\log \right] \sigma_{uu}^0(s)$$

$$\sigma_{uu}^{(R)} = \frac{\alpha}{4\pi} \left[+4 \left[\log^2 + 3\log \right] + \frac{26}{3}\log \right] \sigma_{uu}^0(s) + \int dz \left[\dots \right]_+ \sigma_{uu}^0(zs)$$

Correction to charged initial state

$$\begin{aligned} \sigma_{du}^{(V)} &= \frac{\alpha}{4\pi} \left[-3 \left[\log^2 + 3\log \right] - \frac{26}{3}\log \right] \sigma_{du}^0(s) \\ \sigma_{du}^{(R)} &= \frac{\alpha}{4\pi} \left[+\frac{5}{2} \left[\log^2 + 3\log \right] + \frac{26}{3}\log \right] \sigma_{du}^0(s) + \int dz \left[\dots \right]_+ \sigma_{uu}^0(zs) \end{aligned}$$

Structure of Sudakov Logarithms

Correction to neutral initial state

$$\sigma_{uu}^{(V)} = \frac{\alpha}{4\pi} \left[-3 \left[\log^2 + 3 \log \right] - \frac{26}{3} \log \right] \sigma_{uu}^0(s)$$

$$\sigma_{uu}^{(R)} = \frac{\alpha}{4\pi} \left[+4 \left[\log^2 + 3 \log \right] + \frac{26}{3} \log \right] \sigma_{uu}^0(s) + \int dz \left[\dots \right]_+ \sigma_{uu}^0(zs)$$

Correction to charged initial state

$$\begin{aligned} \sigma_{du}^{(V)} &= \frac{\alpha}{4\pi} \left[-3 \left[\log^2 + 3\log \right] - \frac{26}{3}\log \right] \sigma_{du}^0(s) \\ \sigma_{du}^{(R)} &= \frac{\alpha}{4\pi} \left[+\frac{5}{2} \left[\log^2 + 3\log \right] + \frac{26}{3}\log \right] \sigma_{du}^0(s) + \int dz \left[\dots \right]_+ \sigma_{uu}^0(zs) \end{aligned}$$

Sum of virtual and real contribution

$$\begin{aligned} \sigma_{uu} &= \sigma_{uu}^{(V)} + \sigma_{uu}^{(R)} = +1 \frac{\alpha}{4\pi} \left[\log^2 + 3\log \right] \sigma_{uu}^0 + \int dz \left[\dots \right]_+ \sigma_{uu}^0(z) \\ \sigma_{du} &= \sigma_{du}^{(V)} + \sigma_{du}^{(R)} = -\frac{1}{2} \frac{\alpha}{4\pi} \left[\log^2 + 3\log \right] \sigma_{du}^0 + \int dz \left[\dots \right]_+ \sigma_{uu}^0(z) \end{aligned}$$

Real and virtual corrections

- neutral initial state: compensation possible
- charged initial state: only weakening possible

Restriction on the phase space

Scenario (a): only collinear emission

Scenario (b): collinear and soft emission

 $\theta_a, \theta_b, \theta_2, \theta_3 < \theta_{cut}$

 $\theta_a, \theta_b < 5^\circ$ and $\theta_{23} > 180^\circ - \theta_f$

 $E_1 < \sqrt{s}/2$

Scenario (a): collinear radiation

 $\theta_a, \theta_b, \theta_2, \theta_3 < \theta_{cut}$

Scenario (b): collinear and soft radiation

Scenario (a) and (b)

Jörg Rittinger, TTP Karlsruhe

Real Radiation and Sudakov Logarithms

summary and outlook

summary

- we studied the structure of the Sudakov Logarithms in the four-fermion process
- two different restrictions on the phase space (collinear vs collinear+soft)
- combination of both gives us an idea of importance of real radiation

outlook

• calculating the four-fermion process in the standard model