Higher Moments of Correlators at Four Loop

A. Maier P. Maierhöfer P. Marquard

Institut für Theoretische Teilchenphysik Universität Karlsruhe

> Meeting of SFB/TR 9 March 25, 2009

Outline

- 2 Calculation of Higher Moments
- 3 Quark Masses
- 4 Even Higher Moments

-

Quark Current Correlators

Low energy expansion \Rightarrow Quark masses

Moments and Quark Masses from experiment

Measure

$${\it R}(s)=rac{\sigma(e^+e^-
ightarrow {
m hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Use dispersion relation:

$$\Pi(q^2) = rac{q^2}{12\pi^2} \int_0^\infty {
m d}s rac{R(s)}{s(s-q^2)}$$

• Taylor expand around $q^2 = 0$:

$$\frac{3Q^2}{16\pi^2} \sum_n C_n \left(\frac{q^2}{4m^2}\right)^n = \sum_n (q^2)^n \frac{1}{12\pi^2} \underbrace{\int \mathrm{d}s \frac{R(s)}{s^{n+1}}}_{\mathcal{M}_n^{exp}}$$

$$m = \frac{1}{2} \left(\frac{9Q^2}{4} \frac{C_n}{\mathcal{M}_n^{exp}} \right)^{\frac{1}{2n}}$$

Quark Mass Determination

Higher Moments \Rightarrow More weight on threshold and resonances $(\mathcal{M}_n^{exp} \sim \int ds \frac{R(s)}{s^{n+1}})$

Are higher moments better?

- O More sensitive to quark mass
- Better data
- Growing nonperturbative contributions
- Increasing complexity of calculations

Calculating Moments

[Källén, Sabry '55; Chetyrkin, Kühn, Steinhauser '96; Chetyrkin, Kühn, Steinhauser '97; Kühn, Steinhauser, Sturm '06; Boughezal, Czakon, Schutzmeier '06; Sturm '08; Maier, Maierhöfer, Marquard '08]

$$\Pi(q^2) = \frac{3Q^2}{16\pi^2} \sum_n C_n \left(\frac{q^2}{4m^2}\right)^n$$

Reduce to scalar diagrams:

$$C_n = C_n^{(0)} + C_n^{(1)} \frac{\alpha_s}{\pi} + C_n^{(2)} \left(\frac{\alpha_s}{\pi}\right)^2 + C_n^{(3)} \left(\frac{\alpha_s}{\pi}\right)^3 + \cdots$$
$$= \bigcirc + \bigcirc + \bigcirc + \bigcirc + \bigcirc + \bigcirc + \cdots$$

Higher *n* means

- More additional propagator powers ("dots")
- More scalar products of loop momenta
- $C_3^{(3)}$: 12 dots, 8 scalar products, ~ 4000000 diagrams

Reduction to Master Integrals

Scalar diagrams:

$$\int \frac{d^d k_1}{(2\pi)^d} \cdots \frac{d^d k_l}{(2\pi)^d} \frac{1}{D_1^{a_1} \cdots D_m^{a_m}}$$

Integration by parts (IBP) [Chetyrkin, Tkachov '81]:

$$\int \frac{d^d k_1}{(2\pi)^d} \dots \frac{d^d k_l}{(2\pi)^d} \frac{\partial}{\partial k_i^{\mu}} p_j^{\mu} \frac{1}{D_1^{a_1} \dots D_m^{a_m}} = 0$$

(p_j: External or loop momentum)

 \Rightarrow Linear system of equations for scalar integrals; can be solved via Gauss elimination $_{[Laporta\ '00]}$

 \Rightarrow Solution in terms of small set of (known) master integrals

Reduction to Master Integrals

Problem: System of equations is huge! (Naïvely: $\mathcal{O}(10^6)$ integrals \times 16 IBP relations)

Ideas:

- Use symmetries of diagrams
- Intelligent choice of input diagrams
- Special treatment of diagrams with self energies
- Different approach (e.g. Gröbner Bases [Smirnov, Smirnov '06])

Charm Quark Mass

[updated from Kühn, Steinhauser, Sturm '07]

$$C_3^{(3),v}\big|_{n_f=4} = -2.839$$

	$m_c(3 GeV)$	exp	α_s	μ	np	total	$\Delta C^{(3)}$	$m_c(m_c)$
1	0.986	0.009	0.009	0.002	0.001	0.013		1.286
2	0.976	0.006	0.014	0.005	0.000	0.016		1.277
3	0.978	0.005	0.015	0.007	0.002	0.017		1.278
4	1.012	0.003	0.008	0.030	0.007	0.032	0.016	1.309

- Everything in agreement
- Best value still from first moment

 $m_c(m_c) = 1.286(13) \text{ GeV}$

-

Bottom Quark Mass

[updated from Kühn, Steinhauser, Sturm '07]

$$C_3^{(3),v}\big|_{n_f=5} = -1.174$$

	$m_b(10~GeV)$	exp	α_s	μ	total	$\Delta C^{(3)}$	$m_b(m_b)$
1	3.593	0.020	0.007	0.002	0.021	_	4.149
2	3.607	0.014	0.012	0.003	0.019		4.162
3	3.617	0.010	0.014	0.006	0.019	_	4.172
4	3.631	0.008	0.015	0.021	0.026	0.012	4.185

- Still agreement, but increasing values of *m_b* (unknown systematic experimental error?)
- Second and third moment equally good, taking average

 $m_b(m_b) = 4.167(19) \text{ GeV}$

m_c and α_s from Lattice

[updated from HPQCD + Chetyrkin, Kühn, Steinhauser, Sturm '08]

$$C_4^{(3),p}\big|_{n_f=4} = 13.328$$

	$m_c(3 \text{ GeV})$	Δ		α_s (3 GeV)	Δ
2	0.985	0.010	1	0.2523	0.0057
3	0.986	0.011	2/3	0.2486	0.0059
4	0.981	0.013	3/4	0.2368	0.0112
5	0.968	0.023	4/5	0.2207	0.0396

- Good agreement between different moments
- Good agreement between lattice and experiment

Even More Moments together with Y. Kiyo

Moments $C_n^{(3)}$ with n > 3?

No Problem!

ヨト・イヨト

∃ 9 < €</p>

Even More Moments together with Y. Kiyo

Moments $C_n^{(3)}$ with n > 3?

No Problem!

... if we knew $\Pi(q^2)$ at four loops for arbitrary q^2 ...

= nar

Even More Moments together with Y. Kiyo

Moments $C_n^{(3)}$ with n > 3?

No Problem!

... if we knew $\Pi(q^2)$ at four loops for arbitrary q^2 ...

Reconstruct $\Pi(q^2)$ approximately using information from

- low energy region
- threshold region
 [Beneke, Smirnov '97; Czarnecki, Melnikov '97; ...; Hoang, Teubner '98; Pineda, Signer '06; ...]

 high energy region [Chetyrkin, Harlander, Kühn '00; Baikov, Chetyrkin, Kühn '08]

and Taylor expand around $q^2 = 0$

Padé Approximation

[Broadhurst, Fleischer, Tarasov '93; Baikov, Broadhurst '95; Chetyrkin, Kühn, Steinhauser '96; Hoang, Mateu, Zerbarjad '08; Masjuan, Peris '08]

Approximation to f(x)

$$p_{n,m}(x) = rac{a_0 + a_1 x^1 + \dots + a_n x^n}{1 + b_1 x^1 + \dots + b_m x^m}$$

Coefficients a_i , b_i from

$$f^{(k)}(x_j) = p_{n,m}^{(k)}(x_j)$$

 $(f^{(k)}(x_j) = k$ th derivative of f at $x_j)$

Padé: Simple Example

Example:

0.

$$f(x) = \log(1+x), \quad p_{1,1}(x) = \frac{a_0 + a_1 x}{1 + b_1 x}$$

Possible constraints:

$$p_{1,1}(0) = f(0), \quad p_{1,1}(1) = f(1), \quad p'_{1,1}(1) = f'(1)$$

$$\Rightarrow p_{1,1}(x) = \frac{0.96 x}{1 - 0.39 x}$$

$$p_{1,1}(x) = \frac{0.96 x}{1 - 0.39 x}$$
Original function
Padé approximant
Taylor series

A. Maier (Universität Karlsruhe)

 $\exists \rightarrow$

3

Approximating Correlators

Problems:

• Logarithms in threshold and high energy expansions e.g. α_s^3 contribution to the vector correlator:

$$\begin{array}{l} \Pi^{(3),\nu}(q^2) \xrightarrow{q^2 \to -\infty} = -\ 6.172 - 0.06988 \log\left(-\frac{q^2}{m^2}\right) + 0.1211 \log^2\left(-\frac{q^2}{m^2}\right) \\ -\ 0.03665 \log^3\left(-\frac{q^2}{m^2}\right) + \dots \end{array}$$

Pranch cut above threshold:

A. Maier (Universität Karlsruhe)

15 / 18

Application to Correlators Charm Quark Vector Current

Solution:

$$\Pi(q^2) = \Pi_{reg}(q^2) + \Pi_{log}(q^2)$$

$$\frac{q^2}{4m^2} = \frac{4\omega}{(1+\omega)^2}$$

Low Energy Behaviour Charm Quark Vector Current preliminary

$$C_4^{(3),\nu}\Big|_{nf=4} = -3.347^{+0.027}_{-0.037}$$
$$C_5^{(3),\nu}\Big|_{nf=4} = -3.73^{+0.10}_{-0.10}$$
$$C_6^{(3),\nu}\Big|_{nf=4} = -3.72^{+0.22}_{-0.19}$$

A. Maier (Universität Karlsruhe)

1 17 / 18 Meeting of SFB/TR 9

3

Summary

- Low energy moments of quark correlators allow precise determinations of quark masses from experiment or lattice simulation
- First three (four) moments are calculated, extracted quantities are in good agreement
- Higher moments can be estimated from approximations to the correlators