Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Determining The Charm-Quark Mass and QCD Coupling from Moments of Current-Current Correlators

Marcus Petschlies in collaboration with Karl Jansen, Michael Müller-Preußker and Carsten Urbach

Humboldt-Universität zu Berlin

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results
Content			

1 Introduction

2 Lattice Setup

3 Sketch of the calculational procedure

4 Current status and preliminary results

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results
Outline			

1 Introduction

2 Lattice Setup

3 Sketch of the calculational procedure

4 Current status and preliminary results

Marcus Petschlies in collaboration with Karl Jansen, Michael Müller-Preußker and Carsten Urbach

Humboldt-Universität zu Berlin

-∢ ≣⇒

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results
Motivation			

- quark masses and strong coupling constant: fundamental parameters of the Standard Model, only input parameters of QCD Lagrangian
- Confinement ⇒ free quark states not observed in Nature, experimental determination of quark masses only indirectly
- serve as boundary conditions of the renormalisation group equations
- pQCD and LQCD: calculations and precise measurements from first principles
 - \Rightarrow comparison with experiment = precision test of Standard Model
- LQCD provides control over non-perturbative effects of strong interaction — alternative approach to sum rules using experimental data
- \blacksquare possibility to choose from a variety of operators in LQCD to extract α_s and m_c

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Input from continuum perturbation theory

hadronic contributions to vacuum polarisation functions

$$q^{2} \Pi^{p} = i \int d^{4}x e^{iqx} \langle 0|T\{J^{p}(x) J^{p}(0)\}|0\rangle$$

$$\left(-q^{2}g_{\mu\nu} + q_{\mu}q_{\nu}\right) \Pi^{\delta} + q_{\mu}q_{\nu}\Pi^{\delta}_{L} = i \int d^{4}x e^{iqx} \langle 0|T\{J^{\delta}_{\mu}(x) J^{\delta}_{\nu}(0)\}|0\rangle,$$
with $\delta = v, a J^{p} = \bar{\psi}\gamma_{5}\psi, J^{v}_{\mu} = \bar{\psi}\gamma_{\mu}\psi$ and $J^{a}_{\mu} = \bar{\psi}\gamma_{\mu}\gamma_{5}\psi$
low momentum region: expansion of $\Pi^{p, \delta}$ in $z = \frac{q^{2}}{4m_{c}^{2}(\mu)}$ in \overline{MS}

scheme

$$\Pi^{p,\delta}(q^2) = \frac{3}{16\pi^2} \sum_{k \ge -1} \bar{C}_k^{p,\delta} z^k , \quad \bar{C}_k = \sum_{m \ge 0} \left(\frac{\alpha_s}{\pi}\right)^m \bar{C}_k^{(m)} \left(\log\left(\frac{m_c^2(\mu)}{\mu^2}\right)\right)$$

• coefficients for vector, axial vector and pseudoscalar correlator available up to third order in α_s (recent publications 0805:3358 [hep-ph], 0806:3405 [hep-ph])

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Input from lattice QCD

 moments of renormalised correlators from charmed currents at zero spatial momentum:

$$C^{p,\delta}(t) = a^{6} \sum_{\vec{x}} \langle J_{c}^{p,\delta}(\vec{x},t) J_{c}^{p,\delta}(\vec{0},0) \rangle$$
$$G_{n}^{p,\delta} = \sum_{t/a=-N_{t}/2+1}^{N_{t}/2-1} \left(\frac{t}{a}\right)^{n} C^{p,\delta}(t) \,,$$

with $J_c^{\rho,\delta} = \bar{\psi}_c \Gamma^{\rho,\delta} \psi_c$, $\Gamma^{\rho} = \gamma_5$, $\Gamma^{\nu} = \sum_i \gamma_i$, $\Gamma^a = \gamma_0 \gamma_5$

cut-off independence and dimensional analysis imply

$$G_2^{p,\delta} = g_2^{p,\delta}(\alpha_s(\mu), m_c(\mu)/\mu) + \mathcal{O}((a m_c)^m)$$

$$G_n^{p,\delta} = \frac{g_n^{p,\delta}(\alpha_s(\mu), m_c(\mu)/\mu)}{(a m_c(\mu))^{n-2}} + \mathcal{O}((a m_c)^m),$$

with n > 2, exponent *m* depends on lattice discretization scheme

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Analysis using data from lattice QCD (cont.)

<u>Aim:</u>

- extrapolate non-perturbatively measured, renormalized lattice moments to zero lattice spacing and zero light quark mass
- 2 match with perturbative expansion of continuum moments renormalised in \overline{MS} scheme
- $\exists \Rightarrow \text{extract } m_c(\mu) \text{ and } \alpha_s(\mu)$
- quenched analysis by Bochkarev and de Forcrand (hep-lat/9505025)
- analysis with dynamical u, d, s quark and Highly Improved Staggered Quark action by HPQCD (0805.2999v2 [hep-lat]) $\Rightarrow m_c$ and α_s with uncertainty of $\mathcal{O}(1\%)$ (combined statistical and systematic)

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results
Outline			

2 Lattice Setup

3 Sketch of the calculational procedure

4 Current status and preliminary results

Humboldt-Universität zu Berlin

< E

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Twisted Mass Lattice QCD (JHEP 0108:058,2001)

• Wilson-type fermion discretisation for $n_f = 2$ mass degenerate quark flavours *up*, *down*:

$$S_{tm} = a^4 \sum_{x} \bar{\psi}(x) \left[D_W + m_0 + i\mu_f \gamma_5 \tau^3 \right] \psi(x);$$

- m_0 bare (untwisted) quark mass, μ_f twisted mass parameter
- automatic $\mathcal{O}(a)$ improvement of physical observables, if $m_0 \rightarrow m_{cr}$ \Leftrightarrow "maximal twist" (JHEP 0108:058,2001)
- bare quark mass given by μ_f alone
- no charm in the sea, but heavy charm doublet added in valence sector ⇒ partially quenched analysis

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Twisted Mass Lattice QCD — $\mathcal{O}(a)$ improvement

 numerically well established in the light sector (e.g. scaling of f_{PS} PoS LAT2007:022,2007)

in our case, e.g.
$$G_2^{p,\delta}(a,\mu_I,\mu_c) = g_2^{p,\delta}(\alpha_s(\mu),m_c(\mu)/\mu) + c_2(am_c)^2$$

• possibly severe $\mathcal{O}(a^2)$ effects due to $a \sim 0.33 - 0.51 \,\text{GeV}^{-1}$ but $m_c \sim 1 \,\text{GeV}$

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Twisted Mass Lattice QCD — Ensembles

- twisted mass configurations with $n_f = 2$ at maximal twist available via LDG
- three lattice spacings *a*/fm = 0.0995(7), 0.0855(5), 0.0667(5)
- analysis for fourth lattice spacing $a \approx 0.055 \,\mathrm{fm}$ in preparation
- spatial lattice size $L \gtrsim 2 \, \mathrm{fm}$
- for each lattice spacing several values of μ_I s.t. $m_{PS} = 300 \sim 600 \text{ MeV}$
 - $\Rightarrow \mu_I$ dependence of lattice moments
- for each pair (a, μ_I) several μ_c covering physical point in $m_{\eta_c}, m_{J/\psi}$ \Rightarrow interpolation at physical point
- $\blacksquare \approx 240$ and ≈ 150 independent gauge configurations on $24^3 \times 48$ and $32^2 \times 64,$ repsectively

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Twisted Mass Lattice QCD — Renormalisation

- study P P, $A_0 A_0$ (η_c meson) and $V_i V_i$ (J/ψ meson) correlators
- local currents $\bar{\psi}(x)\Gamma^{p,\delta}\psi(x)$ not conserved on the lattice
- ⇒ either need (non-perturbative) renormalisation factors $Z_A, Z_V, Z_P/Z_S$
- ⇒ or consider RG invariant combinations of correlation functions, e.g. ratios of moments $G_n^{p,\delta}/G_m^{p,\delta}$ of same Lorentz structure
 - renormalisation factors Z_A , Z_V , Z_P/Z_S by ETMC from LQCD
 - \Rightarrow large class of operators to extract α_s , m_c in twisted mass LQCD

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results
Outline			

2 Lattice Setup

3 Sketch of the calculational procedure

4 Current status and preliminary results

- ∢ ⊒ →

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Reducing finite a errors

• start with
$$G_n = \sum_{t/a} a^6 C(t, \vec{p} = \vec{o}) (t/a)^n$$
 s.t.

$$G_n = \frac{g_n(\alpha_s(\mu), m_c(\mu)/\mu))}{(am_c(\mu)^{n-2}} + \alpha_s^0\left((am_c)^m + \ldots\right) + \alpha_s^1\left((am_c)^m + \ldots\right)$$

devide by lowest order lattice perturbation theory contribution:

$$G_n/G_n^{(0)} = \frac{g_n}{g_n^{(0)}} \left(\frac{m_{pole\,c}^{(0)}}{m_c(\mu)}\right)^{n-2} + \alpha_s^1\left((am_c)^m + \ldots\right)$$

 \rightarrow cancellation of explicit factors of the lattice spacing \rightarrow cancellation of finite a corrections to all orders in a and α_s^0

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Suppressing errors in the bare charm quark mass

multiplication of G_n/G_n⁽⁰⁾ by (am_{ηc}/2am⁽⁰⁾_{polec})ⁿ⁻² (hep-lat/9404012)
 modifies leading m_c(µ) dependence:

$$\frac{G_n}{G_n^{(0)}} \left(\frac{am_{\eta_c}}{2a\,m_{pole\,c}^{(0)}}\right)^{n-2} = \frac{g_n}{g_n^{(0)}} \left(\frac{m_{\eta_c}}{2m_c(\mu)}\right)^{n-2} + \mathcal{O}((am_c)^m\alpha_s);$$

I.-h. s.: am_{η_c} measured in LQCD; r.-h. s.: $m_{\eta_c} \to m_{\eta_c}^{exp}$ (same for $m_{J/\psi}$)

■ reduced sensitivity on (small) shifts in $a\mu_c$ due to correlation of am_{η_c} and $a\mu_c$

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Definition of reduced moments R_n

$$R_n = \begin{cases} G_2/G_2^{(0)} & \text{for } n = 2\\ \left(G_n/G_n^{(0)}\right)^{1/(n-2)} \left(\frac{am_{\eta_c}}{2am_{pole\ c}^{(0)}}\right) & \text{for } n \ge 4 \end{cases}$$

implying the relation to continuum quantities in the \overline{MS} scheme

$$R_n = \begin{cases} r_2(\alpha_s, m_c/\mu) + \mathcal{O}((am_c)^m \alpha_s) & \text{for } n = 2\\ r_n(\alpha_s, m_c/\mu) \frac{m_{\eta_c}}{2 m_c(\mu)} + \mathcal{O}((am_c)^m \alpha_s) & \text{for } n \ge 4 \end{cases}$$

 r_n are related to coefficients of the polarisation functions $\Pi(q^2)$ via

$$r_{2k+2} = \left(\frac{\bar{C}_k}{\bar{C}_k^{(0)}}\right)^{\frac{1}{2k}}$$
 as 3rd degree polynomial in α_s

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results
E. 1.C	c		

Final formulae for m_c and α_s

• obtain $m_c(\mu)$ as solution of equations:

$$m_c(\mu) = \frac{m_{\eta_c}^{exp}}{2} \frac{r_n(\alpha_s(\mu), m_c(\mu)/\mu)}{R_n} \quad \text{for } n \ge 4$$

with α_s fixed

• defining equations for α_s as solution of:

$$R_2 = r_2(\alpha_s(\mu), m_c(\mu)/\mu)$$

for fixed $m_c(\mu)$

- scale μ corresponds to meson masses m_{η_c} , $m_{J/\psi} \approx 3 \, {
 m GeV}$
- analogoue formulae for α_s from R_n/R_{n+2} and m_c from $R_n \sim \sqrt{G_n/G_{n-2}}$

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Outline

- 2 Lattice Setup
- 3 Sketch of the calculational procedure
- 4 Current status and preliminary results

< E

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Interpolation of reduced moments

- am_{η_c} -dependence of R_n^p , n = 4, 6, 8 at a = 0.0667 fm, $a\mu_{sea} = 0.003$, interpolation point marked by dashed line
- uncertainty of interpolation point induced by $a \lesssim 0.7\%$
- despite suppression of tuning errors significant slope in the neighbourhood of the interpolation point
- higher moments $R_n \sim a m_{\eta_c} / a \mu_c$ dominant behaviour

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

- for large t $C^p(t)(t/a)^n \sim e^{-m_{\eta_c}t} t^n$
- dominant support moves to larger t with growing n → growing truncation effects in t−sum
- with $am_{\eta_c} \gtrsim 1$ and $N_t = 48$ negligable effects up to 10th, 12th moment

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

- for large t $C^p(t)(t/a)^n \sim e^{-m_{\eta_c}t} t^n$
- dominant support moves to larger t with growing n → growing truncation effects in t−sum
- with $am_{\eta_c} \gtrsim 1$ and $N_t = 48$ negligable effects up to 10th, 12th moment

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

- for large t $C^p(t)(t/a)^n \sim e^{-m_{\eta_c}t} t^n$
- dominant support moves to larger t with growing n → growing truncation effects in t−sum
- with $am_{\eta_c} \gtrsim 1$ and $N_t = 48$ negligable effects up to 10th, 12th moment

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

- for large t $C^p(t)(t/a)^n \sim e^{-m_{\eta_c}t} t^n$
- dominant support moves to larger t with growing n → growing truncation effects in t−sum
- with $am_{\eta_c} \gtrsim 1$ and $N_t = 48$ negligable effects up to 10th, 12th moment

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Finite T cutoff at tree-level

- η_c meson much lighter than in dynamical case $am_{\eta_c} \approx 2a\mu_c$
- severe cutoff already for moment no. 8
- ⇒ moments calculated on $N_s^3 \times \mathbb{Z}$ lattice (Nucl.Phys.B800:94-108,2008)

- at present level of accuracy no significant systematic dependence on $a\mu_{sea}$ observable
- fitted to a constant for all moments from all correlators (cf. HPQCD ansatz $R_n(a) \sim Rn(0)(1 +$ $f_{n,1}(2m_{u/d}+m_s)/m_c+...)$ motivated by χPT

Continuum extrapolation — $\lim_{a\to 0}$

- reproduction of HPQCDs Fig. 1 of 0805:2999 [hep-lat];
- low moments inherit larger uncertainties from Z factor
- if O(a) term negligable, then apparently huge O(a²) terms (slope of straight line)
- requires additional lattice spacing: a = 0.055 fm already provided by ETMC, analysis in progress

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Continuum extrapolation — comparison with HPQCD results for $R_{4,6}^{p}$

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Preliminary results for the charm quark mass $- R^p$

- fig. shows m_c(μ = 3 GeV) obtained from matching R^p_n to pQCD expansion for n = 6,..., 18
- strong coupling set to $\alpha_{\overline{MS}}(n_f = 4, \mu = 3 \text{ GeV}) = 0.252(10)$ to extract m_c
- central values approx. 10% above HPQCD results
- truncation error from perturbative series not included

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Preliminary results for the charm quark mass — R^{v} , R^{a}

Humboldt-Universität zu Berlin

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Preliminary results for the charm quark mass — for R^{ν} , R^{a} ratios

Humboldt-Universität zu Berlin

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Conclusions and Outlook

- calculated $m_c(\mu)$ from current-current correlators by matching LQCD to pQCD
- (reduced) moments from pseudoscalar, vector and axial vector currents as well as ratios of these give compatible results, but at present $\approx 10\%$ larger values
- check of continuum extrapolation with additional lattice spacing
- use advanced χPT motivated combined extrapolation $(a, m_{u,d}) \rightarrow (0, 0)$
- neglect vacuum polarisation effects due to *strange* and *charm* quark $(n_f = 2, \text{ partially quenched})$; possibly use ETMC's $n_f = 2 + 1 + 1$ configurations
- large uncertainties of lower moments from renormalisation constants (yet results agree with those from RGI moments), maybe look for additional RGI combinations of lattice operators in the charm sector
- analysis for α_s (requires m_c as input)

Introduction	Lattice Setup	Sketch of the calculational procedure	Current status and preliminary results

Thank you very much for your attention. Farewell, till our next meeting.

-