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Different sources of theoretical uncertainties

“observable = theoretical expression”

1. theoretical expression is only approximate
often obtained by expansion in small parameter

 estimate size of uncalculated/neglected terms

2. input parameters from standard model:
αs, mc,b, mt, mW,Z ,mH , CKM matrix elements

note: running αs(µ) depends implicitly on quark masses

3. nonperturbative QCD parameters or functions, e.g.
parton densities, fragmentation functions,
decay constants, wave functions (e.g. for B → D`ν, B → πK)

note: PDFs and fragmentation fcts. depend on αs(µ) via evolution

quantities in 2., 3. may be obtained from
• comparison “measured observable = theor. expression”
• nonperturbative calculation (e.g. lattice)
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Higher orders, power corrections, and all that
observables in high-energy collisions typically evaluated from
factorization formula∗, e.g.

dσ

d(variables)
=

1
Qn

PDF
(
µF , αs(µF )

)⊗
x
C
(µF
Q
,
µR
Q
,αs(µR), . . .

)
+O

( 1
Qn+1

or
1

Qn+2

)
I Q = hard momentum scale x = scaling variable

I convolution f ⊗
x
g =

∫ 1

x

dz

z
f
(x
z

)
g(z)

I in C(. . .) possible dependence on mt,mW,Z ,mH etc.

I now discuss in turn:
• higher-order corrections (1st line)

• power corrections (2nd line)

∗ in some rare cases have factorization theorems
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Higher orders

dσ

d(variables)
=

1

Qn
PDF

`
µF , αs(µF )

´
⊗
x
C
“µF
Q
,
µR
Q
,αs(µR), . . .

”
+O(. . .)

I have αs expansions for C and for d
dµF

PDF

I in hard scattering

• µR ↔ UV divergences
• µF ↔ collinear divergences

may keep separate

I in general not inconsistent to take different orders in
αs expansion of C and of PDF evolution
overall accuracy is of course given by least accurate term

usefulness to be discussed case by case

I analogous comment for order in C and in running of αs
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Renormalization scale dependence

on next slides write µ instead of µR for brevity

I renormalization group equation

d

d logµ2
αs(µ) = β

(
αs(µ)

)
with β(αs) = −α2

s

(
b
nf
0 + b

nf
1 αs + b

nf
2 α2

s + b
nf
3 α3

s + . . .
)

I in practice truncate series of β(αs) and solve RGE numerically
or by expansion of αs(µ) in 1

log(µ2/Λ2
QCD)

I higher-coefficients in αs expansion of hard-scattering
coefficient are µ dependent

C = αms (µ)C0 + αm+1
s (µ)C1

(
Q
µ

)
+ αm+2

s (µ)C2

(
Q
µ

)
+ . . .

but C independent of µ to any given accuracy in αs:

d

d logµ2
C(µ) = 0
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see how this works:

I set µ = Q in expansion:

C = αms (µ)C0 + αm+1
s (µ)C1

`
Q
µ

´
+ αm+2

s (µ)C2

`
Q
µ

´
+ . . .

= αms (Q)C0 + αm+1
s (Q)C1(1) + αm+2

s (Q)C2(1) + . . .

I expand αs(Q) = αs(µ) + a1

`
Q
µ

´
α2
s(µ) + a2

`
Q
µ

´
α3
s(µ) +O(α4

s)

d

d logQ2
(l.h.s.) = β

`
αs(Q)

´
= −b0α2

s(Q)− b1α3
s(Q) +O(α4

s)

= −b0α2
s(µ)− 2a1b0α

3
s(µ)− b1α3

s(µ) +O(α4
s)

d

d logQ2
(r.h.s.) =

da1

d logQ2
α2
s(µ) +

da2

d logQ2
α3
s(µ) +O(α4

s)

I compare coefficients of αns (µ):

da1

d logQ2
= −b0 ⇒ a1

`
Q
µ

´
= −b0 log Q2

µ2

da2

d logQ2
= −2a1b0 − b1 ⇒ a2

`
Q
µ

´
= +b20 log2 Q2

µ2 − b1 log Q2

µ2
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I inserting

αs(Q) = αs(µ)
h
1−αs(µ) b0 log Q2

µ2 +α2
s(µ)

“
b20 log2 Q2

µ2 −b1 log Q2

µ2

”
+. . .

i
into C = αms (Q)

h
C0 + αs(Q)C1(1) + α2

s(Q)C2(1) + . . .
i

get

C = αms (µ)

×
h
1− αs(µ)mb0 log Q2

µ2 + α2
s(µ)

“
m(m+1)

2
b20 log2 Q2

µ2 −mb1 log Q2

µ2

”i
×
h
C0 + αs(µ)C1(1) + α2

s(µ)
“
C2(1)− C1(1) b0 log Q2

µ2

”i
+O(αm+3

s )

I in C = αms (µ)C0 + αm+1
s (µ)C1

`
Q
µ

´
+ αm+2

s (µ)C2

`
Q
µ

´
+ . . .

have coefficients

C1

`
Q
µ

´
= C1(1)−mb0C0 log Q2

µ2

C2

`
Q
µ

´
= C2(1)−

h
(m+ 1)b0C1(1) +mb1C0

i
log Q2

µ2 + m(m+1)
2

b20C0 log2 Q2

µ2

I check (exercise) : d
d log µ2C

`
Q
µ
, αs(µ)

´
=
h

∂
∂ log µ2 + β ∂

∂αs

i
C = 0
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I have

C = αms (µ)C0 + αm+1
s (µ)C1

`
Q
µ

´
+ αm+2

s (µ)C2

`
Q
µ

´
+ . . .

with

C1

`
Q
µ

´
= C1(1)−mb0C0 log Q2

µ2

C2

`
Q
µ

´
= C2(1)−

h
(m+ 1)b0C1(1) +mb1C0

i
log Q2

µ2 + m(m+1)
2

b20C0 log2 Q2

µ2

I calculating C0 (LO) get also terms αm+1
s log Q2

µ2 , α
m+2
s log2 Q2

µ2 , . . .

calculating C1(1) (NLO) get also terms αm+2
s log Q2

µ2 , α
m+3
s log2 Q2

µ2 , . . .

 recover logarithmic terms at higher orders, but not coefficients Cn(1)

I varying µ in NlLO result get variation at Nl+1LO corresponding to

αl+1
s

l+1P
i=1

(known coefficient)× logi µ
2

Q2 +O(αl+2
s )

but no information on αl+1
s Cl+1(1)
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Renormalization scale dependence

I varying µ in NlLO result get variation at Nl+1LO corresponding to

αl+1
s

l+1P
i=1

(known coefficient)× logi µ
2

Q2 +O(αl+2
s )

but no information on αl+1
s Cl+1(1)

consequences:

I when calculate higher orders, expect that scale dependence
decreases

I scale variation in NlLO result estimates size of certain
higher-order terms, but not of all

I uncalculated higher orders often estimated by varying µ
between 1/2 and 2 times some central value
is a conventional choice

I but what to take for central value?
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Renormalization scale choice

I prescriptions for scale choice aiming to minimizing size of
higher-order terms

take NLO calc. of C(µ) = αms C0 + αm+1
s C1(µ) +O(αm+2

s )
I µ = typical virtuality in hard-scattering graphs

useful guidance, but obviously not a well-defined quantity

I fastest apparent convergence (FAC): d
dµ2

1∑
i=0

αm+i
s Ci(µ) = 0

I principle of minimal sensitivity (PMS): C1(µ) = 0

I Brodsky-Mackenzie-Lepage (BLM): C1(µ) independent of nf
recall: coefficients b0, b1, . . . of β function depend on nf

I how much these reduce higher orders depends on process
cannot “predict” higher orders without calculating them
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Factorization scale dependence

I scale dependence of PDF given by DGLAP equation:

d

d logµ2
F

PDF(x, µF ) = PDF(µF )⊗
x
P
(
αs(µF )

)
evolution kernels have perturbative expansion in αs :

P
(
z, αs(µF )

)
= αs(µF )P0(z) + α2

s(µF )P1(z) +O(α3
s)

• choose approx. of evolution kernel (LO, NLO, NNLO)
• solve DGLAP equations numerically
⇒ obtain PDF(µ1) from PDF(µ0)

I hard-scattering coefficient contains powers of log(µF /Q)
µF independence of PDF(µF )⊗ C(µF ) implies

d

d logµ2
F

C
(
x, µF , µR, αs(µR)

)
= −P (αs(µF )

)⊗
x
C
(
µF , µR, αs(µR)

)
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Factorization scale dependence

d

d logµ2
F

C
`
x, µF , αs(µR), . . .

´
= −P

`
αs(µF )

´
⊗
x
C
`
µF , µR, αs(µR)

´
using renormalization group equation can rewrite

αs(µR) = αs(µF ) +
P
i>1

ci(µR/µF )αis(µF )

with expansions

C
`
µF , αs(µF ), µR

´
= C0(µR) + αs(µF )C1(µF , µR) +O(α2

s)

P
`
αs(µF )

´
= αs(µF )P0 + α2

s(µF )P1 +O(α3
s)

can match coefficients order by order

⇒ C1(µF , µR) = C1(Q,µR)− C0(µR)⊗ P0 log
µ2
F

Q2
etc.
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Factorization scale dependence

I try to chose µF such as to avoid large higher-order coefficients

I with C calculated to NlLO have µF dependence of order
Nl+1LO in convolution PDF⊗ C

if evolve PDFs with DGLAP kernels up to αls Pl−1 or higher

I as for µR may estimate certain higher-order terms by varying
µF between e.g. 1/2 and 2 times some central value

I as for µR no general solution for finding µF that minimizes
higher orders
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Multi-scale problems

I scale choice even less obvious when have several hard scales
e.g. Q and pT , Q and mc, pT and mW , . . .
may try to identify typical virtualities in graphs

I for small/large ratios of hard scales
(or small/large values of scaling variables, e.g. x→ 0 or x→ 1)

then have large logarithms in C for any choice of µR, µF

M. Diehl Theoretical uncertainties: selected issues 15



Types of uncertainties Perturbation theory and beyond Parton density fits Summary

Multi-scale problems

I for certain cases can resum large logarithms to all orders
e.g. αns logn+i for all n with given i = 0, 1, . . .

I transverse-momentum logs: log pT

Q  Sudakov factors

I threshold logs: log M2

ŝ

for production of mass M with partonic collision energy
√
ŝ

σ(ep) ∼
R
dz PDF(z)C(ŝ = zW 2)

σ(pp) ∼
R
dz1dz2 PDF(z1) PDF(z2)C(ŝ = z1z2s)

I high-energy logs: log 1
x  BFKL logs

• resummation procedure may have its own uncertainties

e.g. from integrals of type
Q∫
0

dµ f
(
αs(µ)

)
 Landau pole
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LO, NLO, and higher

I instead of varying scale(s) may estimate higher orders by
comparing NlLO result with Nl−1LO

I caveat: comparison NLO vs. LO may not be representative for
situation at higher orders

often have especially large step from LO to NLO
I certain types of contribution may first appear at NLO

e.g. terms with gluon density g(x) in DIS, pp→W +X, etc.
I final state at LO may be too restrictive

e.g. in inclusive DIS
or in dσ

dET1 dET2
for dijet production

ET1

ET2

ET1

ET2
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Power corrections

I for certain observables (typically those for which have operator

product expansion) can identify and estimate size of
power-suppressed terms

I example: τ decay (µR = mτ )

Rτ =
Γ(τ → ντ + hadrons)

Γ(τ → ντ + eνe)
= R0

»
1 +

αs
π

+ 5.2
α2
s

π2
+ 26.4

α3
s

π3

+ c2
m2
q

m2
τ

+ c4
〈mψ̄ψ〉
m4
τ

+ c6
〈ψ̄ψψ̄ψ〉
m6
τ

–

with (schematically) m2
q = combination of squared light quark masses

〈mψ̄ψ〉, 〈ψ̄ψψ̄ψ〉 = expectation values of quark operators in vacuum

used for determination of αs(mτ ) see PDG 2008, sect. 9
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Power corrections

I for certain observables (typically those for which have operator

product expansion) can identify and estimate size of
power-suppressed terms

I example: sum rules for deep inelastic structure functions
Bjorken sum rule for polarized str. fcts. (µR = Q)Z 1

0

dx
`
gp1(x,Q2)− gn1 (x,Q2)

´
=
gA
6

»
1− αs

π
− 3.58

α2
s

π2
− 20.32

α3
s

π3

–
+
〈t〉
Q2
− 2m2

N

9Q2

Z 1

0

dxx2`gp1(x,Q2)− gn1 (x,Q2)
´

〈t〉 = defined from expectation values of ψ̄Gµνγλψ between nucleon states
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Power corrections

I for factorization formulae of type

dσ

d(variables)
=

1

Qn
PDF

`
µF , αs(µF )

´
⊗
x
C
“µF
Q
,
µR
Q
,αs(µR), . . .

”
+O

“ 1

Qn+1
or

1

Qn+2

”
in general have no theoretical expression for power corrections

I exceptions: inclusive DIS and γ∗, W or Z production in pp

hardly used: too many unknown non-perturbative functions
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Power corrections

special case: very small x

I exchange of 4 transverse gluons
suppressed by 1

Q2 relative to 2 gluons

I but has steeper growth with energy

I at given Q2 will eventually dominate as x decreases
 change theoretical framework: BFKL, color dipoles,

parton saturation

I primary expansion parameter is not 1
Q2 but x

full BFKL contains more than log 1
x resummation at leading twist

I in perturbative accuracy (no full NLO for DIS yet) can presently
not compete with collinear factorization
but allows estimate of power suppressed terms
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Jet production

I fundamental problem: factorization formulae are for prod’n of
high-pT partons, not high-pT hadrons

note: due to collinear and soft radiation “momentum of final-state
parton” is only defined at LO

I if apply jet algorithm to partons in theory formula
and to hadrons in measurement
 kinematical ambiguities: energy vs. momentum

(light quarks and gluons taken as massless, hadrons are not)

I event generators model the parton → hadron transition
uncertainty of “hadronization corrections” typically
determined by comparing different models

I may instead use fragmentation functions (theory ∼ for PDFs)

if measure individual hadrons
e.g. γ∗p→ D∗ +X instead of γ∗p→ c+X
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Parton density fits

Principle of PDF determinations:

I compare data with factorization formulae for selected
processes and kinematics

I specify PDF at reference scale Q0

use DGLAP to evolve to scales used in fact. formulae

e.g. CTEQ : Q0 = 1.3 GeV use data with Q > 2 GeV

MSTW : Q0 = 1 GeV use data with Q > 1.4 GeV

I conventional determinations parameterize PDFs at Q0 and
determine parameters by χ2 fit to data

NNPDF collab. uses neural networks, avoids choice of function
claims “unbiased” representation of PDFs

however, theoretical bias regarding shape and smoothness of PDFs

is not illicit
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Evolution
d

d logµ2
F

PDF(x, µF ) =

Z 1

x

dz

z
PDF(z, µF )P

“x
z

”
⇒ specifying PDF(x, µF ) for all x > x0 at one µF

fixes PDF for x > x0 at all other µF

I no inform’n about PDFs at x < x0

without data at x < x0

I indirect inform’n about PDFs at
large x via convolution integrals

y=
1 (

HERA √s=
32

0 G
eV

)

x

Q
2  (

G
eV

2 )

E665, SLAC

CCFR, NMC, BCDMS,

Fixed Target Experiments:

D0  Inclusive jets η<3

CDF/D0   Inclusive jets η<0.7

ZEUS

H1

10
-1

1

10

10 2

10 3

10 4

10 5

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1
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Uncertainties on extracted PDFs

I selection of data sets and kinematics

I perturbative order of evolution and hard-scattering coefficients

I values of αs and mc,mb and possibly other constants

if taken as external parameters i.e. not fitted
some PDF sets available for different values of αs

I fine details of perturbative calculations
e.g. treatment of heavy quarks, resummation

I power corrections (typically try to avoid by minimal Q in data)

I corrections for data with nuclear targets

errors on fitted parameters

I reflect errors (stat. and syst.) of fitted data
discuss on the following slides
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Parametric errors in PDF fits
see e.g. hep-ph/0201195 (CTEQ6), arXiv:0802.0007 (CTEQ6.6)

arXiv:0901.0002 (MSTW 2008)

I errors obtained in χ2 fit

simplest version: χ2 =
∑
i

[
Di − Ti(p)

]2
σ2
i, stat + σ2

i, syst

Di = data point number i

Ti = corresponding theory prediction

p = {p1, . . . , pk} = set of fitting parameters

more sophisticated treatment for correlated systematic errors,

i.e. overall normalization
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χ2 =
X
i

ˆ
Di − Ti(p)

˜2
σ2
i, stat + σ2

i, syst

if assume that errors of Di follow a Gaussian distribution, then

I fitted p follow a k-dim. Gaussian dist. around true values p0

I have k-dim. χ2 distribution for

∆χ2(p) = χ2(p)− χ2
min =

∑
ij(p− p0)iHij (p− p0)j

H = Hesse matrix = inverse of covariance matrix V
I observable O(p) follows Gaussian dist. with error

∆O = T

√∑
ij

∂O
∂pi

H−1
ij

∂O
∂pj

with T = 1 for 68% C.L., T = 2.71 for 95% C.L. etc.
readily generalizes to several obs. and their correlated errors

 complicated in practice, would need derivatives ∂O/∂pi
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∆O = T

sX
ij

∂O
∂pi

H−1
ij

∂O
∂pj

I diagonalize Hesse matrix H and rescale eigenvectors

⇒ linear combinations zi of (p− p0)j satisfying

∆χ2 =
∑
i

z2
i

∆O = T

√∑
i

∂O
∂zi

∂O
∂zi

=

√∑
i

[O(S+
i )−O(S−i )

2

]2
with eigenvector PDF sets S±i
corresponding to parameters zi = ±T and zj = 0 for j 6= i

in last step have linearized O around z = 0

I for large errors ∆χ2 not quadratic in (p− p0)i or zi
 linear error propagation not reliable
 Legendre multiplier method
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Legendre multiplier method

I minimize χ2(p) with constraint O = v uses Legendre mult.

I determine values v with χ2
min(O = v) = χ2

min + T 2

min/max of v −Oχ2
min

gives lower/upper error on O
I equiv. to Hesse method if χ2 quadratic and O linear in p

I requires separate fits for each considered observable O

O = v

χ2
min(O = v) = χ2

min + T 2

χ2
min

p2

p1
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The tolerance criterion

I if data points Di follow Gaussian dist.
then for experiment with Nj data points
expect contribution χ2

j,min ∼ Nj to global χ2
min

I often not seen in practice: for some cases
I χ2

j,min significantly below or above Nj
I χ2

j,min much larger than χ2 minimized separately for experiment

I get inconsistent errors on p when fitting subsets of data

indicates that some data sets not consistent with each other
in such a case standard χ2 errors misrepresent uncertainty

I modified criterion for T CTEQ: T 2 ∼ 100, MSTW: T 2 ≈ 50

I obtained by procedure/algorithm looking at χ2 from individual
experiments

I may be seen as ad hoc deviation from “standard statistics”
but “standard criterion” for T requires that all data points
have Gaussian dist. with quoted uncertainties
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Summary

I estimating theoretical uncertainties 6= an exact science

I “scale uncertainty” based on renormalization group eq.
estimates certain higher-order terms in αs
prescriptions for scale choice = educated guesses

I higher-order terms not the only source of uncertainty
power corrections, hadronization corrections, . . . more difficult
to assess

I errors of PDF fits reflect uncertainties of fitted data
(not a straightforward exercise in textbook statistics)
do not include uncertainties of theory used to fit data
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